Myrmica ruginodis

AntWiki - Where Ant Biologists Share Their Knowledge
Jump to navigation Jump to search
Myrmica ruginodis
Scientific classification
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hymenoptera
Family: Formicidae
Subfamily: Myrmicinae
Tribe: Myrmicini
Genus: Myrmica
Species: M. ruginodis
Binomial name
Myrmica ruginodis
Nylander, 1846

Myrmica ruginodis casent0008642 profile 1.jpg

Myrmica ruginodis casent0008642 dorsal 1.jpg

Specimen labels


A widespread transpalaearctic species that can be common in a variety of habitats.

At a Glance • Polygynous  


Photo Gallery

  • Worker. Photo by Michal Kukla.
  • Workers. Photo by Michal Kukla.
  • Workers. Photo by Michal Kukla.
  • Worker. Photo by Michal Kukla [1]
  • Worker tending aphids. Photo by Michal Kukla [2]
  • Myrmica ruginodis worker. Photo by Michal Kukla.
  • Worker with larvae. Photo by Michal Kukla.
  • Worker. Photo by Michal Kukla.


Radchenko and Elmes (2010) - A member of the rubra group. For quite a long period in the middle of the 20th century the name was synonymised with Myrmica rubra before Yarrow (1955) decided that really M. laevinodis was the true synonym of M. rubra. M. ruginodis can be confused with M. rubra (=laevinodis) in some parts of Europe, especially when solitary specimens are examined; however Brian and Brian (1951) demonstrated that a clear discrimination can be made on the basis of propodeal spine length. The simplest way of discrimination between the two species in the field is to examine the length and shape of the spines (seen in profile) with a x10 hand lens.

Collingwood (1979) - Pale to dark reddish brown. Propodeal spines long and robust; area between their bases laterally striate, frontal triangle smooth and shining. Head and alitrunk coarsely longitudinally rugulose. Antennal scapes long and slender, gently and obliquely curved near their base. Petiole in profile massive with truncate dorsal area and abrupt step posteriorly to its junction with the postpetiole gives the easiest distinction from Myrmica rubra (L.). Head Index: 77.5; Frons Index: 48.3; Frontal Laminae Index: 91.3. Length: 4.0-6.0 mm.

Keys including this Species


Transpalaearctic species, distributed from Atlantic to Pacific Oceans, including Japan; in the south - only in mountains, absent from Middle Asian mountains. Intercepted in quarantine in eastern North America but not known to have become established.

Distribution based on Regional Taxon Lists

Palaearctic Region: Albania, Andorra, Armenia, Austria, Belarus, Belgium, Bulgaria, Channel Islands, China, Croatia, Czech Republic, Democratic Peoples Republic of Korea, Denmark, Estonia, Finland (type locality), Georgia, Germany, Greece, Hungary, Iberian Peninsula, Latvia, Lithuania, Luxembourg, Mongolia, Netherlands, Norway, Poland, Portugal, Republic of Korea, Republic of Macedonia, Romania, Russian Federation, Slovakia, Slovenia, Spain, Sweden, Switzerland, United Kingdom of Great Britain and Northern Ireland.

Distribution based on AntMaps


Distribution based on AntWeb specimens

Check data from AntWeb


Radchenko and Elmes (2010):

M. ruginodis is the species of Myrmica that is most adapted to cool temperatures, at least of those species studied in detail so far, though see data for Myrmica kamtschatica (Berman et al. 2010). Both the workers and brood have an active basal physiology (Elmes et. al. 1999; Nielsen et al. 1999) that, for example, enables it to complete its life cycle in the same time as a Myrmica sabuleti nest but living at a mean nest temperature that is 4-5°C lower (Elmes and Wardlaw 1983a). As in the case of Myrmica rubra local populations appear to have adapted physiologically to local environments (Elmes et. al. 1998). Consequently, M. ruginodis is found in cooler habitats: all kinds of forests, scrublands, alpine meadows, woodland clearings, moorlands and bogs, but generally it avoids both very wet and dry open sites. It is widespread and abundant in these habitats over most of its range, however M. ruginodis is much less tolerant than Myrmica rubra to anthropogenic pressure (grazing, mowing etc.). Like all Myrmica, latitude and altitude determines the species’ basic distribution: in the far north it lives at more or less sea level, while at southern latitudes it is mainly a montane species. At any particular altitude and latitude the degree to which sunlight can penetrate the canopy (be it forest, scrub or long grass) in any habitat will determine the range of potential nest-site temperatures available to the ants (e.g. see Brian and Brian 1951). Its adaptation to cooler nest-sites (above) enables it to live in cool northern forests and so it is one of the commonest ant species in the Forest Zone of the Palaearctic.

In forests and woodlands M. ruginodis prefers to build its nests in (and under) rotten wood, branches and even trunks of fallen trees. However, in managed forest its preferred habits is rotten tree stumps (Brian and Brian 1951; Franch and Espadaler 1988) and often one can find a nest in more or less every stump. In grasslands it prefers to build nests in the surface of the soil in and among the roots of grass (particularly Molinea species - see Elmes 1978b). In wetter boggy areas nests are usually constructed in the tops of moss tussocks. In spring the workers build a small solarium above their nest where the overwinter brood is reared; the solaria are usually a mixture of soil particles and dead vegetation, pieces of grass, moss etc. and can be quite warm in sunshine. Such nests are often temporary and the ants migrate to a new site every few months, often one can find a series of nests belonging to the same colony: first the active nest, another a meter or so away that is in the process of construction and occupied by a few workers and brood, and an old nest a meter or so in the opposite direction occupied by just a few workers and sometimes, an even older nest a meter or so further away from that (personal observations). It was such a colony that Forel observed in 1866 (see notes on var. ruginodolaevinodis above). In more open grassland where colonies build more permanent nests in the soil and under stones, the substrate affects nest densities (Fedoseeva and Demchenko 1997).

Early studies on caste determination, worker behaviour and larval ontogeny were made using M. ruginodis [Sic!] as the model species (Weir 1958c, 1959a; Brian 1951b) before M. V. Brian and his co-workers switched to M. rubra. Also, M. ruginodis was one of the first Myrmica species studied ecologically (see Pickles 1940 and e.g. Brian 1950) and more recently interesting life history traits of some populations have resulted from molecular genetical studies (see Seppa 1992,1994; Seppa and Pamilo 1995). M. ruginodis workers are among the species that are most prolific in producing worker-laid eggs (Wardlaw and Elmes 1998). Understanding its ecology has become important to nature conservation because M. ruginodis one of the primary hosts for the endangered butterfly Phengaris alcon (see papers in Settele et al. 2005). In particular, understanding the species and colony recognition odours and their mimicry by the lepidopteran caterpillars is important, the cuticular surface chemicals of M. ruginodis are quite distinct from those of M. rubra (e.g. Elmes et. al. 2002). Like the other Mynnica species, workers lave long been known to stridulate (Swinton 1878).

The workers are generalist predators, hunting small invertebrates (e.g. Brian 1955b) and forming trophobiosis with aphids, though this is generally less developed than is the case for M. rubra. Some studies have been made of recruitment to food sources (Cammaerts and Cammaerts 1980). In many habitats the eliasomes of various seeds play an important role in the diet of M. ruginodis and they have important mutualistic interaction with the plants (e.g. Kjellsson 1985; Mark and Olsen 1996; Gammans et al. 2006).

It is in the studies of behaviour and population ecology of M. ruginodis that the concept of var. macrogyna and var. microgyna diverges from the taxonomic notion (see taxonomic notes above). As the two forms have no status in taxonomy we refer to them as “normal” and “microgyne” M. ruginodis respectively. Brian and Brian (1949, 1955a) showed that in west Scotland the queens in polygynous colonies of M. ruginodis were visibly smaller (microgynes) than those in monogynous (normal) colonies (mean head width 1.02 ± 0.06 mm vs. 1.13 ± 0.04 mm), intermediate sized queens (head width about 1.06 mm were quite rare). They showed that apart from being more polygynous, microgyne colonies have workers that are generally less aggressive and more tolerant of other workers and queens compared to workers from normal colonies. Microgyne colonies recruit new queens and reproduce by colony fission whereas normal queens are more likely to attempt to establish new colonies by independent (or pleometrotic) colony foundation. Thus microgyne colonies are adapted to spread rapidly into and monopolise habitats that are stable in the long term (such as grassy moorland) and the original colonising gene pool might remain in such a habitat for many hundreds of years. Normal queens are better at dispersing into new habitats where they form relatively short-lived monogynous colonies, though such colonies sometimes engage in secondary recruitment (Seppa et al. 1995) and may even recruit some microgynes. Later we confirmed the size dimorphism shown by Brian and Brian and showed that most populations have at least a small proportion of microgyne queens (Elmes 1978a); also we made the interesting observation that the overall proportion of morphological variation of workers, expressed at the population level, was about the same for both forms but a much higher proportion of this (ca 60%) was expressed within individual microgyne colonies compared to only 40% within normal colonies (Elmes and Clarke 1981). This was compatible with a higher number of unrelated queens producing workers in the microgyne colonies. We also showed that there were differences in the pattern of brood production and control of castes between the two forms (Elmes and Wardlaw 1983a, b).

It is clear that the size and behavioural differences represent a true polymorphism in M. ruginodis that enables the species to exploit and monopolise a much wider range of habitats than it otherwise could. The fact that M. rubra (= laevinodis) also has a semi-parasitic, microgyne form combined with the nomenclatural problems from 1935-1955 (see notes to M. rubra) has confused many people. Synthesisers have often confounded the results for the two species. We recommend that anyone interested in these problems should consult the original literature and bear in mind the name changes. To date we have no understanding of the underlying genetical mechanism behind the polymorphism, as far as we know the two forms “breed true” and nobody has been able to produce a microgyne queen from a normal mother or vice-versa.

As a general rule, monogynous (or with two or three queens) colonies usually have only normal queens, whereas highly polygynous colonies often have a mixture of queens, a few normal queens and many more microgynes. Normal queens in microgyne colonies apparently have a more “microgyne-like” tolerant behaviour, which begs the question as to whether normal queens have an ethological dimorphism with some having an intrinsic microgyne-like behaviour and others having a “monogynous normal” behaviour as described by Brian and Brian (1955). This question still remains to be resolved. Microgyne colonies average about 6 queens (with> 20 queens being common), while normal colonies average 1 queen (with 4-5 queens being very unusual). Surprisingly, the average worker populations of the two types of colony do not vary significantly, the best overall estimate of colony size in Britain is about 500 workers (Elmes and Keller 1993; Wardlaw and Elmes 1996). On upland moorland (> 200 m a.s.l.) colonies are smaller (about 400 workers) than on lowland southern heaths and lowland Scottish moors (700 and 1200 workers respectively), the difference between southern England and Scotland being statistically significant. There has been considerable debate as to whether Japanese populations of M. ruginodis have a microgyne form (Mizutani 1981; Kasugai et al. 1983; Ichinose 1990; Kikuchi et al. 1999). We suggest that probably the microgyne form is not present in the Far East and that M. kotokui populations occupy the ecological niche normally used by microgyne M. ruginodis in the west; this remains to be fully tested.

Nuptial flight occurs in August-September (in mountains as late as mid-October) and over the years have been regularly reported in the literature (e.g. Beare 1913; O'Rourke 1940) and swarms, comprising mostly of males, often have been taken in light traps (e.g. Elmes and Webb 1985). Brian and Brian (1949, 1955) showed that microgynes are more likely to mate in or near to the nest in local swarms and join existing colonies whereas normal queens are more likely to fly to larger more distant nuptial swarms and attempt independent colony foundation. However, in regions where the microgyne form is found, mixed swarms are common but there is no evidence to support the idea of assortative mating between the two forms (Elmes 1991), although larger males are more likely to find a mate than smaller ones. Perhaps only the size of the mother is important in determining the nature of her female offspring and the parentage of the males is not important (a sort of maternally mitigated polymorphism). Similar ideas were discussed in relation to M. lonae (see above).

Finally, the question of the stinging-abilities of M. ruginodis: like most Myrmica species the workers readily deploy their sting when defending their nest against intruders. Their venom is quite potent (Jentsch 1969a, b) but the general perception is that M. ruginodis workers are much less aggressive towards human disturbance than M. rubra and that when provoked into stinging, the sting is less painful (see ecological notes for M. rubra). However, in warm humid conditions on Hokkaido Island Japan we found a dense population of M. ruginodis nesting on the stumps of felled trees in a spruce forest. These workers were very aggressive attacking as freely and stinging as painfully as the worst M. rubra colonies we have observed. Furthermore, in these conditions M. kotokui stung freely and painfully. Thus willingness to sting and the amount of venom injected appears to be an interaction between the level of basic behavioural aggressive responses (probably varying between species and populations) and temperature; it would be interesting to test this under controlled conditions.

Collingwood (1979) - This common species is abundant throughout the woodlands and high moorlands of North Europe to the North Cape. Brian and Brian (1949) showed that this species occurred in two incompletely dimorphic races, one polygynous with many small queens approaching the microgyne condition and one monogynous with single large queens which they termed var. microgyna and var. macrogyna respectively; microgyna was found to readily accept strange queens and to occur in more stable habitats often forming groups of nests as is common with Myrmica rubra; macrogyna is more aggressive and hostile to strange queens, has more populous nests and is more generally distributed, predominating in woodland and more transitory habitats (Brian and Brian, 1955). Both forms occur in Scandinavia but cannot in conventional taxonomy be regarded as either distinct species or biotopic subspecies because of wide overlap in morphology and habitat. Mating flights occur in August near or on the ground.

Milar et al. (2017) found in an experimental test, simulating being threatened with entrapment in sand (as might happen if falling in an ant lion pit or if subjected to a collapse of a ground nest), that this species did not exhibit rescue behaviour. This was in agreement with their hypothesis that species that do not face entrapment situations would not show such a response. Myrmica ruginodus natural occur in areas with less friable soils.

Redproductive Strategies

Wolf et al. (2018) tested existing hypothesis about the ecological conditions that should support different queen forms, i.e., normal queens versus microgynes. Using a range of data from nests and other sampling conducted in Finland, collected over many years and across numerous populations, they found mixed results for most of the tests performed. There was some evidence that there were life-history correlates associated with different queen types but this was not consistent across all the populations.


See the general biology discussion above for an overview of diet and foraging. Novgorodova (2015b) investigated ant-aphid interactions of a dozen honeydew collecting ants in south-central Russia. All of the ants studied had workers that showed high fidelity to attending particular aphid colonies, i.e, individual foragers that collect honeydew tend to return to the same location, and group of aphids, every time they leave the nest. Myrmica ruginodis showed no specialization beyond this foraging site fidelity. Foragers tended Chaitophorus populeti (Panzer) and Aphis jacobaeae Schrank.


Da Silva et al. (2017) - The mite Petalomium gottrauxi






The following information is derived from Barry Bolton's New General Catalogue, a catalogue of the world's ants.

  • ruginodis. Myrmica ruginodis Nylander, 1846a: 929, pl. 18, figs. 5, 30 (w.q.m.) FINLAND. Hauschteck, 1965: 325 (k.). Subspecies of rubra: Forel, 1874: 76; Emery & Forel, 1879: 460; Ruzsky, 1904a: 288; Bondroit, 1910: 498; Forel, 1915d: 28; Menozzi, 1918: 82; Karavaiev, 1927c: 258; of laevinodis: Mayr, 1886d: 450; Ruzsky, 1902d: 29. Junior synonym of rubra: Santschi, 1931b: 339. Status as species: Saunders, E. 1880: 214; André, 1883a: 317; Nasonov, 1889: 33; Forel, 1892i: 315; Bondroit, 1912: 351; Donisthorpe, 1915d: 115; Bondroit, 1918: 103; Santschi, 1919e: 244; Müller, 1923: 41; Finzi, 1926: 85; Stitz, 1939: 83; Novak & Sadil, 1941: 76; Holgersen, 1942: 8; Collingwood, 1958b: 68; Bernard, 1967: 120; Collingwood & Yarrow, 1969: 56; Kutter, 1977c: 67; Arnol'di & Dlussky, 1978: 530; Collingwood; 1979: 53; Seifert, 1988b: 6; Atanassov & Dlussky, 1992: 86. Senior synonym of diluta: Mayr, 1861: 63, Radchenko, 2007: 28; of dimidiata: Weber, 1947: 448; of ruginodolaevinodis: Bernard, 1967: 120; Boven, 1977: 115; of mutata: Seifert, 1988b: 6; of macrogyna, microgyna: Bolton, 1995b: 282; of silvestrii, sontica, yoshiokai: Radchenko & Elmes, 2010: 236. See also: Radchenko, 2007: 30.
  • diluta. Myrmica diluta Nylander, 1849: 41 (w.) RUSSIA. Junior synonym of ruginodis: Mayr, 1861: 63; Radchenko, 2007: 28.
  • ruginodolaevinodis. Myrmica rubra var. ruginodolaevinodis Forel, 1874: 78 (q.m.) SWITZERLAND. Raised to species: Stitz, 1917: 347. Subspecies of rubra: Finzi, 1926: 86; Stitz, 1939: 84; Sadil, 1952: 241. Junior synonym of ruginodis: Bernard, 1967: 120; Boven, 1977: 115.
  • silvestrii. Myrmica ruginodis var. silvestrii Wheeler, W.M. 1928d: 100 (w.) JAPAN. Subspecies of rubra: Weber, 1947: 451. Raised to species: Collingwood, 1976: 301. Junior synonym of ruginodis: Radchenko & Elmes, 2010: 236.
  • sontica. Myrmica kurokii var. sontica Santschi, 1937h: 367 (w.) JAPAN. Currently subspecies of kurokii: Weber, 1947: 470. Junior synonym of ruginodis: Radchenko & Elmes, 2010: 236.
  • yoshiokai. Myrmica rubra subsp. yoshiokai Weber, 1947: 451 (w.) JAPAN. Raised to species: Collingwood, 1981: 26. Junior synonym of ruginodis: Radchenko & Elmes, 2010: 236.
  • macrogyna. Myrmica rubra var. macrogyna Brian, M.V. & Brian, A.D. 1949: 397 (q.m.) GREAT BRITAIN. Junior synonym of ruginodis: Bolton, 1995b: 281.
  • microgyna. Myrmica rubra var. microgyna Brian, M.V. & Brian, A.D. 1949: 397 (q.m.) GREAT BRITAIN. Junior synonym of ruginodis: Bolton, 1995b: 281.
  • mutata. Myrmica rubra var. mutata Sadil, 1952: 242, fig. I (w.) CZECHOSLOVAKIA. Junior synonym of ruginodis: Seifert, 1988b: 6.

Unless otherwise noted the text for the remainder of this section is reported from the publication that includes the original description.


Nylander 1846. Page 929
Nylander 1846. Page 930


Radchenko and Elmes (2010) - from a combination of the Latin words ruga = wrinkle and nodus = knot or lump, to describe the rugose surfaces of the petiole and postpetiole.


  • André, E. 1883a. Les fourmis. [part]. Pp. 281-344 in: André, Edm. 1881-1886. Species des Hyménoptères d'Europe et d'Algérie. Tome Deuxième. Beaune: Edmond André, 919 + 48 pp. (page 317, Status as species)
  • Arnol'di, K. V.; Dlussky, G. M. 1978. Superfam. Formicoidea. 1. Fam. Formicidae - ants. Pp. 519-556 in: Medvedev, G. S. (ed.) Keys to the insects of the European part of the USSR. Vol. 3. Hymenoptera. Part 1. Opredeliteli Faune SSSR 119:3-584. (page 530, Status as species)
  • Atanassov, N.; Dlussky, G. M. 1992. Fauna of Bulgaria. Hymenoptera, Formicidae. Fauna Bûlg. 22: 1-310 (page 86, Status as species)
  • Bernard, F. 1967a [1968]. Faune de l'Europe et du Bassin Méditerranéen. 3. Les fourmis (Hymenoptera Formicidae) d'Europe occidentale et septentrionale. Paris: Masson, 411 pp. (page 120, Status as species; Senior synonym of ruginodolaevinodis)
  • Bolton, B. 1995b. A new general catalogue of the ants of the world. Cambridge, Mass.: Harvard University Press, 504 pp. (page 282, new synonymy: Senior synonym of macrogyna and microgyna)
  • Bondroit, J. 1910 [1909]. Les fourmis de Belgique. Ann. Soc. Entomol. Belg. 53: 479-500 (page 498, Variety/subspecies of rubra)
  • Bondroit, J. 1912. Fourmis de Hautes-Fagnes. Ann. Soc. Entomol. Belg. 56: 351-352 (page 351, Status as species)
  • Bondroit, J. 1918. Les fourmis de France et de Belgique. Ann. Soc. Entomol. Fr. 87: 1-174 (page 103, Status as species)
  • Boven, J. K. A. van. 1977. De mierenfauna van België (Hymenoptera: Formicidae). Acta Zool. Pathol. Antverp. 67: 1-191 (page 115, Senior synonym of ruginodolaevinodis)
  • Collingwood, C. A. 1958d. The ants of the genus Myrmica in Britain. Proc. R. Entomol. Soc. Lond. Ser. A 33: 65-75 (page 68, Status as species)
  • Collingwood, C. A. 1979. The Formicidae (Hymenoptera) of Fennoscandia and Denmark. Fauna Entomol. Scand. 8: 1-174 (page 53, Status as species)
  • Collingwood, C. A.; Yarrow, I. H. H. 1969. A survey of Iberian Formicidae (Hymenoptera). EOS. Rev. Esp. Entomol. 44: 53-101 (page 56, Status as species)
  • Da Silva, R. A., A. A. Khaustov, J. M. S. Lopes, J. H. C. Delabie, and A. R. Oliveira. 2017. A new species of Petalomium from Brazil with a redescription of Petalomium gottrauxi Mahunka 1977 (Acari: Heterostigmatina: Neopygmephoridae). Systematic and Applied Acarology. 22:1800-1812. doi:10.11158/saa.22.11.2
  • Donisthorpe, H. 1915f. British ants, their life-history and classification. Plymouth: Brendon & Son Ltd., xv + 379 pp. (page 115, Status as species)
  • Emery, C.; Forel, A. 1879. Catalogue des Formicides d'Europe. Mitt. Schweiz. Entomol. Ges. 5: 441-481 (page 460, Variety/subspecies of rubra)
  • Finzi, B. 1926. Le forme europee del genere Myrmica Latr. Primo contributo. Boll. Soc. Adriat. Sci. Nat. Trieste 29: 71-119 (page 85, Status as species)
  • Forel, A. 1874. Les fourmis de la Suisse. Systématique, notices anatomiques et physiologiques, architecture, distribution géographique, nouvelles expériences et observations de moeurs. Neue Denkschr. Allg. Schweiz. Ges. Gesammten Naturwiss. 26: 1-452 (page 76, Variety/subspecies of rubra)
  • Forel, A. 1892j. Die Ameisenfauna Bulgariens. (Nebst biologischen Beobachtungen.). Verh. K-K. Zool.-Bot. Ges. Wien 42: 305-318 (page 315, Status as species)
  • Forel, A. 1915d. Fauna insectorum helvetiae. Hymenoptera. Formicidae. Die Ameisen der Schweiz. Mitt. Schweiz. Entomol. Ges. 12(B Beilage: 1-77 (page 28, Variety/subspecies of rubra)
  • Hauschteck, E. 1965. Halbe haploide Chromosomenzahl im Hoden von Myrmica sulcinodis Nyl. (Formicidae). Experientia (Basel) 21: 323-325 (page 325, karyotype described)
  • Holgersen, H. 1942b. Ants of northern Norway (Hym., Form.). Tromso Mus. Årsh. 63(2 2: 1-34 (page 8, Status as species)
  • Karavaiev, V. 1927d. The ant fauna of Ukraine. Zb. Prats Zool. Muz. 2:1-52 [= Tr. Ukr. Akad. Nauk Fiz.-Mat. Vidd. 4:247-296] (page 258, Variety/subspecies of rubra)
  • Kutter, H. 1977c. Hymenoptera, Formicidae. Insecta Helv. Fauna 6: 1-298 (page 67, Status as species)
  • Lyu, D.-P. 2006. Review of the genus Myrmica in Korea (Hymenoptera: Formicidae). Journal of Asia-Pacific Entomology 9: 189-202.
  • Mayr, G. 1861. Die europäischen Formiciden. Nach der analytischen Methode bearbeitet. Wien: C. Gerolds Sohn, 80 pp. (page 63, Senior synonym of diluta)
  • Mayr, G. 1886d. Die Formiciden der Vereinigten Staaten von Nordamerika. Verh. K-K. Zool.-Bot. Ges. Wien 36: 419-464 (page 450, Variety/subspecies of laevinodis)
  • Menozzi, C. 1918. Primo contributo alla conoscenza della fauna mirmecologica del Modenese. Atti Soc. Nat. Mat. Modena (5) 4: 81-88 (page 82, Variety/subspecies of rubra)
  • Miler, K., B. E. Yahya, and M. Czarnoleski. 2017. Pro-social behaviour of ants depends on their ecological niche-Rescue actions in species from tropical and temperate regions. Behavioural Processes. 144:1-4. doi:10.1016/j.beproc.2017.08.010
  • Müller, G. 1923b. Le formiche della Venezia Guilia e della Dalmazia. Boll. Soc. Adriat. Sci. Nat. Trieste 28: 11-180 (page 41, Status as species)
  • Nasonov, N. V. 1889. Contribution to the natural history of the ants primarily of Russia. 1. Contribution to the ant fauna of Russia. Izv. Imp. Obshch. Lyubit. Estestvozn. Antropol. Etnogr. Imp. Mosk. Univ. 58: 1-78 (page 33, Status as species)
  • Novák, V.; Sadil, J. 1941. Klíc k urcování mravencu strední Evropy se zvlástním zretelem k mravencí zvírene Cech a Moravy. Entomol. Listy 4: 65-115 (page 76, Status as species)
  • Novgorodova, T. A. 2015b. Organization of honeydew collection by foragers of different species of ants (Hymenoptera: Formicidae): Effect of colony size and species specificity. European Journal of Entomology. 112:688-697. doi:10.14411/eje.2015.077
  • Nylander, W. 1846a. Adnotationes in monographiam formicarum borealium Europae. Acta Societatis Scientiarum Fennicae. 2:875-944. PDF (page 929, pl. 18, figs. 5, 30 worker, queen, male described)
  • Radchenko, A. G. 1994h. Survey of the species of the rubra, rugosa, arnoldii, luteola and schencki groups of the genus Myrmica (Hymenoptera, Formicidae) from central and eastern Palearctic. Zool. Zh. 73(1 11: 72-80 (page 73, Senior synonym of orientalis)
  • Radchenko, A.G. & Elmes, G.W. 2010. Myrmica ants of the Old World. Fauna Mundi 3: 1-789.
  • Ruzsky, M. 1902d. Material on the ant fauna of the Caucasus and the Crimea. Protok. Obshch. Estestvoispyt. Imp. Kazan. Univ. 206(su suppl: 1-33 (page 29, Variety/subspecies of laevinodis)
  • Ruzsky, M. 1904a. On ants from Archangel province. Zap. Imp. Rus. Geogr. Obshch. Obshch. Geogr. 41: 287-294 (page 288, Variety/subspecies of rubra)
  • Santschi, F. 1919e. Fourmis d'Espagne et des Canaries. Bol. R. Soc. Esp. Hist. Nat. 19: 241-248 (page 244, Status as species)
  • Santschi, F. 1931c. Notes sur le genre Myrmica (Latreille). Rev. Suisse Zool. 38: 335-355 (page 339, Junior synonym of rubra)
  • Saunders, E. 1880. Synopsis of the British Heterogyna and fossorial Hymenoptera. Trans. Entomol. Soc. Lond. 1880: 201-304 (page 214, Status as species)
  • Seifert, B. 1988b. A taxonomic revision of the Myrmica species of Europe, Asia Minor, and Caucasia (Hymenoptera, Formicidae). Abh. Ber. Naturkundemus. Görlitz 62(3): 1-75 (page 6, Status as species; Senior synonym of mutata)
  • Stitz, H. 1939. Die Tierwelt Deutschlands und der angrenzenden Meersteile nach ihren Merkmalen und nach ihrer Lebensweise. 37. Theil. Hautflüger oder Hymenoptera. I: Ameisen oder Formicidae. Jena: G. Fischer, 428 pp. (page 83, Status as species)
  • Weber, N. A. 1947b. A revision of the North American ants of the genus Myrmica Latreille with a synopsis of the Palearctic species. I. Ann. Entomol. Soc. Am. 40: 437-474 (page 448, Senior synonym of dimidiata)
  • Wolf, J. I., P. Punttila, and P. Seppa. 2018. Life-history trait variation in a queen-size dimorphic ant. Ecological Entomology. 43:763-773. doi:10.1111/een.12662