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Abstract Flowering plants exhibit a wide variation

in the resources they invest in dispersal structures

(dispersal investment), but the environmental corre-

lates still remain unclear in many cases. Canopy

openness is predicted to be negatively correlated with

dispersal investment, because selective pressures on

increased dispersal investment, including host-speci-

fic natural enemies and the paucity and/or ephemer-

ality of safe sites, will be more prevalent in shady sites.

Here, we tested this prediction by firstly examining the

correlation between dispersal investment and canopy

openness as well as abundance of the representative

natural enemy (rusts, Puccinia spp.) through seven

populations of an ant-dispersed sedge, Carex lanceo-

lata (Cyperaceae). Secondly we conducted a cafeteria

experiment to verify the effect of intraspecific varia-

tion in dispersal investment on diaspore preferences of

seed dispersing ants. Lastly, a seedling transplant

experiment was performed to clarify whether seed

dispersal distances by ants are sufficient to reduce

infection by the rusts. We found a negative correlation

between dispersal investment and canopy openness,

thus supporting the prediction. Moreover, there were

more signs of rust infection caused byPuccinia spp. on

adult plant leaves in more shady sites. The cafeteria

experiment showed that a large ant species (Formica

japonica) with relatively long seed dispersal distances

tended to prefer diaspores with greater dispersal

investments, while smaller ant species with shorter

dispersal distances preferred diaspores with lower

dispersal investments. The seedling transplant exper-

iment revealed that rust severity in sedge offspring

was considerably reduced by the typical seed dispersal

distance (ca. 4 m) afforded by the large ant species,

F. japonica. The increased rust severity at shady sites,

combined with the narrow dispersal ranges of rusts,

can partially explain the negative correlation of

dispersal investment with canopy openness. These

results support the importance of canopy openness as a

factor underlying the variations in dispersal invest-

ment seen among flowering plants.

Keywords Seed dispersal � Myrmecochory �
Intraspecific variation � Canopy openness � Dispersal
investment � Carex lanceolata

Introduction

Seed dispersal is a key facilitator of plant regeneration

(Howe and Smallwood 1982; Hanzawa et al. 1988;

Wenny and Levey 1998; Christian 2001; Packer and

Clay 2000, 2003; Fragoso et al. 2003), therefore

investments in seed dispersal structures (hereafter
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referred to as dispersal investment, see Thomson et al.

2018) such as wings or pulp can affect plant fitness and

is a determinant of seed dispersal ability (Mark and

Olesen 1996; Cheptou et al. 2008; Leal et al. 2014;

Thomson et al. 2018). The actual relationships among

dispersal investment and plant fitness appear to change

in a context-dependent manner, as suggested by the

tremendous diversity in dispersal investment seen

among flowering plants (Hughes and Westoby 1992;

Edwards 2005; Edwards et al. 2006; Thomson et al.

2018). For example, investments in wind-dispersal

structures can vary among species depending on the

species-specific shade tolerances, because shade intol-

erant species would require longer seed dispersal

distances to reach sparsely distributed canopy gaps

(Green 1983). Clarification of factors underlying the

differentiation in dispersal investments will contribute

to the better understanding of the plant demography,

especially considering the important demographic

consequences of seed dispersal (Hanzawa et al.

1988; Terborgh et al. 2008; Cheptou et al. 2008;

Effiom et al. 2013) and potential for the rapid

evolution of seed dispersal traits (Cheptou et al.

2008; Galetti et al. 2013). A few empirical studies

have examined the relationships among dispersal

investments and putative factors including habitat

fragmentation (Cheptou et al. 2008), species-specific

tolerance to negative density dependence (Takeuchi

et al. 2005) and canopy openness (Venable et al.

1998). However, the number of empirical studies is

still limited for each putative factor in a sharp contrast

with the vegetative traits, in which a plentiful of

studies are available for individual factors (Reich et al.

1998; Wright et al. 2002, 2008; Sack and Scoffoni

2013; Sendall et al. 2016).

Canopy closure following forest development can

select for higher dispersal investments for at least three

reasons. First, safe sites will become increasingly

ephemeral as canopy closure proceeds, which reduces

the benefit of staying in a former safe site while

increasing the benefit of colonizing new safe sites

(Venable et al. 1998). Second, negative interactions

between conspecific individuals often increases as

canopy openness decreases (Augspurger 1984;

Comita et al. 2009), possibly due to the increased

abundance of natural enemies (Augspurger 1984;

Roberts and Paul 2006) and the reduction in defenses

against pests and pathogens in shady areas (Roberts

and Paul 2006; Norghauer et al. 2008). The high

abundance of natural enemies in areas with low

canopy openness may increase the need to escape from

conspecifics and hence result in the evolution of

greater dispersal distances. Considering the general

importance of light for forest herbs (Meekins and

McCarthy 2000; Whigham 2004; Tinya et al. 2009;

Westerband and Horvitz 2015), a significant propor-

tion of the variations in dispersal investment seen

among flowering plants may be explained by the

among-site variation in canopy openness. Third, in the

case of animal-dispersed plants, changes in the species

composition of seed dispersing animals might accom-

pany the alteration in canopy openness (Andersen

2019) and affect the selection pressure for dispersal

investments via interspecific variations in the prefer-

ences for dispersal investments (e.g., Hughes and

Westoby 1992; Leal et al. 2014). Despite of these

multiple reasons, only one study, involving an

epizoochorous herb, has examined the relationship

between dispersal investment and canopy openness, in

which the predicted negative correlation between

canopy openness and dispersal investment was sup-

ported (Venable et al. 1998).

The perennial sedge Carex lanceolata (Cyper-

aceae) inhabits a wide range of habitats from semi-

natural grasslands to forests (Koyanagi et al. 2009;

Hashimoto et al. 2012). Diaspores of C. lanceolata

possess elaiosomes as rewards and, following gravity

dispersal, are dispersed by various ant species includ-

ing Formica japonica, Pheidole noda, Paratrechina

flavipes, and Crematogaster osakensis (Tanaka and

Tokuda 2016). Of these, the large ant, F. japonica

(body length ca. 5 mm) exhibits much greater seed

dispersal distances (average and maximum dispersal

distances: 4 and 15 m, respectively) than other

sympatric ants (0.3 and 3 m, respectively) (Tanaka

and Tokuda 2016). Furthermore, F. japonica, contrary

to the sympatric smaller ants, clearly preferred dias-

pores of C. lanceolata with larger elaiosomes over

those of C. tristachya with smaller elaiosomes

(Tanaka and Tokuda 2016). This suggests that the

higher dispersal investment into elaiosome helps to

extend seed dispersal distances, resulting in the

reduction in disease transmission from adults to

offspring, although it remains to be determined

whether F. japonica can discriminate the intraspecific

difference in elaiosome size hence impose natural

selection on the trait. As with other Carex spp.

(Alexander et al. 2007), C. lanceolata is infected by
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host-specific fungi, including rusts and smuts, of

which rusts are much more prevalent in our focal sites

(K. Tanaka: unpublished data). In wheat, majority of

new lesions are formed within tens of centimeters

from source lesions (Frezal et al. 2009; Farber et al.

2017). Although dispersal distances has not been

reported for the rusts of Carex, the short dispersal

distances of rusts in wheat, another graminoid, implies

that the typical seed dispersal distance of F. japonica

(4 m) is effective to separate seeds from infected

adults and thereby prevent or at least delay the

seedling infection. As abundance of fungal pathogens

tends to be higher at shady sites than open sites

(Roberts and Paul 2006), the pathogen-induced selec-

tion pressure is predicted to be stronger at shady sites

as well, leading to the negative correlation between

dispersal investment and canopy openness in C.

lanceolata.

To test these predictions, we quantified the rela-

tionship between dispersal investment (as measured

by the proportion of elaiosome area to diaspore area)

and canopy openness across populations of C. lance-

olata. Then, we examined if there was a greater

abundance of natural enemies at sites with less canopy

openness. To confirm that seed dispersal distance of F.

japonica is sufficient to prevent or delay seedling

infection by rusts, we conducted a seedling transplant

experiment. We also evaluated the influence of

intraspecific variation in dispersal investment on the

diaspore removal by ants to confirm that ants can be a

selective agent for higher dispersal investments in C.

lanceolata when the longer dispersal distances are

adaptive.

Materials and methods

Study sites

The among-population comparisons of dispersal

investments and related variables were conducted at

seven sites in Ibaraki and Tochigi Prefectures, central

Japan (total number of plants marked: 85, Table 1).

The mean annual temperature and mean annual

rainfall across the study sites between 1981 and

2010 was 13.5 �C and 1289 mm, respectively (calcu-

lations based on data from the Japan Meteorological

Agency, https://www.data.jma.go.jp/obd/stats/etrn/).

Areas of study sites range from 0.4 to 12.9 ha with the

average of 4.6 ha, and vegetation in all the sites is

secondary forest or forest clearance dominated by the

white oak Quercus serrata. Understorey vegetation is

composed of dwarf bamboos, tussock grasses, and

evergreen shrubs, with relative abundance varies

across the sites. The median distance between adjacent

sites was 8.9 km (range 0.9–37.7 km). Of the seven

sites, two adjacent sites (Motegi 1 and 2) were used for

the cafeteria experiment.

The seedling transplanting experiment was con-

ducted at Mt. Hinokuma, Saga Prefecture, southwest-

ern Japan (33� 340 N, 130� 350 E, alt. 0–160 m a.s.l).

Although mean annual temperature (16.5 �C) and

rainfall (1870 mm) is higher than the study sites in

Ibaraki Prefecture, rust infection is similarly common

as in Ibaraki.

Relationships among canopy openness, dispersal

investments, and rust prevalence

In April 2019, we haphazardly marked 7–26 flowering

plants of C. lanceolata at each site. The number of

marked plants varied among the study sites due to

different abundances of C. lanceolata. Marked plants

were located at least 2 m from one another. In May

2019, the natural fruiting season of this sedge, we

collected diaspores from each marked plant, placed

them in plastic bags, and stored them in a refrigerator

at 4 �C until use. Within 7 days of their collection,

seeds were rehydrated by placing them in wet, folded

filter paper in a plastic bag and storing them in a

refrigerator at 4 �C for 12 h. Then, photographs

at 9 20 magnification of two or three diaspores per

plant (depending on diaspore availability) were taken

using a digital camera (WRAYCAM-EL310, WRAY-

MER INC., Japan) attached to a binocular microscope.

The number of diaspores collected per plant was

sufficient to characterize dispersal investment of each

plant individual, because nested ANOVA showed that

within-plant variance in dispersal investments

accounted for only 4.4% of total variance. The

diaspores were placed such that the maximum area

of elaiosomes was visible from above. The areas of

elaiosomes and whole diaspores were measured using

Image J (Rasband 1997–2007). From these measure-

ments, dispersal investment was calculated as the ratio

of elaiosome area to the total area of a diaspore (i.e.,

elaiosome ? seed body). In addition, seed body area

was calculated by subtracting the elaiosome area from
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the diaspore area to clarify whether the variation in

dispersal investment can be produced by the variation

in seed sizes (due to positive allometry between

elaiosome and seed size, Edwards et al. 2006). All of

these diaspore traits were averaged for each plant. In

August 2019, we measured the canopy openness 1 m

above each marked plant using the canopy-scope

method (Brown et al. 2000; Westerband and Horvitz

2015; Browne and Karubian 2016), which estimates

the size of the largest visible gap on a scale of 0–25.

There were 25 plants lost due to mowing or vandalism,

therefore the total number of plants sampled for

canopy openness was reduced to 60 plants. For each of

these 60 plants, the two longest leaves were collected

and taken to the laboratory. Images of the leaves were

taken by a flat bed scanner, and based on the images,

presence or absence of the red-colored pustules was

recorded as rust symptom (confirmed by Prof. Y. Ya-

maoka at Tsukuba University). Then, the proportion of

leaves with rust symptoms was calculated for each

site, and this was used as a proxy for rust prevalence.

Effect of seed dispersal distance on rust severity

in seedlings

A seedling transplant experiment was conducted to

evaluate if the average seed dispersal distance by

F. japonica (ca. 4 m) was sufficient to reduce the rust

severity in offspring plants. Diaspores were collected

from at least ten fruiting plants in May 2016 and were

individually sown in cell trays filled with sand. The

cell trays were placed in an unheated greenhouse on

Saga University campus (33� 240 2200 N; 130� 290 1500
E). Seedlings were transplanted from the trays into a

field between late June and early July 2016, once they

had produced two leaves. Before the seedlings were

transplanted, eight adult plants with rust symptoms

were haphazardly marked along a trail, each of which

was at least 10 m apart from the next. Then, one

seedling was transplanted at distances of 30, 100, and

400 cm from the marked adults. The three distance

classes were selected to simulate seed dispersal

distances by small ants (C. osakensis and

P. flavipes:\ 40 cm), medium ants (P. noda:

128 cm), and large ants (F. japonica: 425 cm), based

on Tanaka and Tokuda (2016). Then, the rust severity

on each seedling was recorded each week using the

following categories: 0, no symptoms; 1, symptoms

observed on less than 50% of a whole plant; 2,

symptoms observed on 50% or more of a whole plant.

The monitoring of seedlings was continued either until

the end of the experiment (2 September 2016) or until

focal seedlings died. For seedlings that died, their

longevity following transplantation was recorded. The

maximum value of rust severity for each seedling

during the experimental period was used for the

analysis.

Table 1 Description of the study sites

Sites

(area: ha)

Coordinate Altitude

(m)

Habitat Main tree species No. plants

sampled

Daigo (0.4) 36� 790 N, 140� 350
E

193 Secondary

forest

Quercus serrata, Prunus jamasakura 9

Motegi 1 (0.8) 36� 460 N, 140� 200
E

251 Forest

clearance

Q. serrata, Rubus spp. 12

Motegi 2

(11.5)

36� 470 N, 140� 210
E

290 Secondary

forest

Q. serrata, Chamaecyparis obtusa 26

Kasama (5.9) 36� 290 N, 140� 250
E

249 Secondary

forest

P. jamasakura, Q. serrata 10

Makabe (12.9) 36� 230 N, 140� 090
E

390 Secondary

forest

Q. serrata, Castanopsis cuspidata var.
sieboldii

11

Oda (0.3) 36� 160 N, 140� 130
E

272 Secondary

forest

Q. serrata, P. jamasakura 10

Tsuchiura

(0.3)

36� 080 N, 140� 160
E

25 Secondary

forest

Q. serrata, Q. myrsinifolia 7
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Diaspore preferences of large and small ants

Diaspores were collected during May 2018 from more

than 30 adult sedges at two sites (Motegi 1 and Motegi

2; Table 1) and refrigerated at 4 �C until use. Cafeteria

experiments were conducted for F. japonica and small

ants at Motegi 1 andMotegi 2, respectively. At Motegi

1, six nests of F. japonica, separated from one another

by at least by 5 m, were marked. At Motegi 2, ant nest

entrances were hidden under leaf litter and therefore

11 plots near flowering C. lanceolata plants were

haphazardly chosen, with minimum distances between

adjacent plots of 5 m. The minimum distance of 5 m

was considered to be sufficient to ensure independent

discoveries of depots by different ant colonies,

because seed dispersal distances in our system rarely

surpass 5 m (Tanaka and Tokuda 2016, K. Tanaka:

unpublished data). The cafeteria experiments were

conducted between the hours of 0930 and 1530 h. Ten

diaspores were randomly selected and placed on a

depot made of circular cork board (10 cm in diameter)

at each of 17 experimental plot. Adjacent diaspores

were separated by approximately 5 mm so that no

diaspore was hidden from the ants under other seeds.

Then, diaspore removal by ants was monitored for

30 min. If any diaspores were removed, both the ants

and the diaspores transported by them were collected

to later measure the diaspore traits. The collected ants

were stored in a plastic bag during the trial to prevent

them removing any further diaspores. A trial was

terminated if no worker ants visited a depot within

5 min. In total, 10 and 22 trials were conducted at

Motegi 1 and 2, respectively. On average, 2.4

diaspores were accidentally lost during each trial,

either due to heavy wind or by the failure to retrieve

diaspores removed by ants. Diaspores used in the

cafeteria experiments were rehydrated by placing

them in a wet, folded filter paper in a plastic bag and

storing them in a refrigerator at 4 �C for 12 h. Then,

the areas of elaiosomes and whole diaspores were

measured using the same protocol described above.

Statistical analysis

All the following analyses were conducted using R

version 3.5.1 (R Foundation for Statistical Computing

2018). Before the analyses were performed, dispersal

investment, elaiosome area, seed body area, and

canopy openness were averaged for each site. Because

significant spatial autocorrelation was not detected for

neither variables as judged from the Moran’s I test

(Moran.I function from ‘‘ape’’ package), correlations

between canopy openness and the other variables

except for rust prevalence (i.e., dispersal investment,

elaiosome area, seed body area) were tested using the

Spearman’s rank correlation test. The nonparametric

correlation test was used here because inspection of

the graph suggested the nonlinear relationships. The

effect of canopy openness on rust prevalence was

analyzed using a generalized linear model (GLM) with

binomial errors its significance was assessed using a

likelihood-ratio test. GLM rather than Spearman’s

rank correlation test (as for other variables) was used

for the rust prevalence to avoid giving the same weight

to the estimates based on radically different number of

leaves. For example, rust prevalences in Tsuchiura and

Motegi 2 were both around 60% but the former was

based on just six leaves, while the latter did on 68

leaves and thus accuracy of the estimated rust

prevalence was clearly higher in the latter.

For the seedling transplant experiment, the effect of

seed dispersal distances on rust severity was analyzed

using a generalized linear mixed model (GLMM)

assuming binomial errors. The response variable in the

model was the relative rust severity, which was

defined as the rust severity (0–2) divided by its

maximum possible value (i.e., 2). Continuous fixed

effects included the distance to marked adults and

seedling longevity, while the identity of marked adults

was incorporated as a random effect to deal with

potential spatial autocorrelation in rust severity.

Longevity was incorporated to control for the poten-

tially unequal probability of rust infection among

seedlings with different longevity, because rusts

would not have had sufficient time to elicit signs of

disease in short-lived seedlings. The effect of distance

to marked adults was tested using the likelihood-ratio

test.

The results of the cafeteria experiments were

analyzed separately for Motegi 1 (F. japonica) and 2

(small ants) using the GLM with binomial errors. In

the models, the occurrence of removal was treated as

the binary response variable, while dispersal invest-

ments and diaspore area were incorporated as explana-

tory variables. We originally included trials as a

random effect but excluded it after finding that the

AICs of models with a random effect are higher than
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those without it. The significance of each explanatory

variable was tested using the likelihood-ratio test.

Results

Relationships among canopy openness, diaspore

traits, and rust severity

As expected, dispersal investments were negatively

correlated with canopy openness across the seven sites

(Spearman’s rank correlation test; q = - 0.964,

P = 0.003, Fig. 1a). The correlation with canopy

openness was not significant for elaiosome area

(q = - 0.214, P = 0.662, Fig. 1b) or for seed body

area (q = 607, P = 0.167, Fig. 1c). Thus, the correla-

tion between dispersal investments and canopy open-

ness likely arose from the simultaneous and

nonsignificant changes in both elaiosome area and

seed body area. Dispersal investments were also

correlated with rust prevalence (q = 0.811,

P = 0.027; data not shown), but the correlation was

weaker than that between dispersal investments and

canopy openness (|q|= 0.964), indicating that canopy

openness imposes a stronger influence on dispersal

investments than rust prevalence does. The binomial

GLM showed that the rust prevalence was signifi-

cantly lower in sites with higher canopy openness

(likelihood-ratio test: v2 = 4.653, P = 0.031, Fig. 2).

Effect of seed dispersal distance on the rust

severity in seedlings

Median longevity of the transplanted seedlings was

83 days and did not differ significantly between

dispersal distances (Log-rank test: P = 0.300, data

not shown). The average rust severity in the trans-

planted seedlings decreased to one-seventh

(0.875–0.125) as the distance to marked adults

increased from 30 to 400 cm (Fig. 3). Statistical

significance of the trend was supported in GLMM

(likelihood-ratio test: v2 = 6.456, P = 0.011).
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study sites. Each point represents a site and error bars on both

axes indicate 95% confidence intervals
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Diaspore preferences of large and small ants

Diaspore removal occurred in all trials at Motegi 1

with the exception of one case. However, diaspore

removal only occurred in 36% (8/22) of trials at

Motegi 2, because of both low ant abundance (50%,

11/22) and elaiosome consumption in situ (14%, 3/22).

As predicted, most diaspores were removed by the

large ant, F. japonica, at Motegi 1, while all diaspores

were removed by small ants at Motegi 2 (Table 2).

Among the small ants, P. flavipes was the dominant

remover of diaspores (Table 2). At Motegi 1, F. japon-

ica showed a marginally significant preference for

diaspores with higher dispersal investments

(v2 = 3.682, P = 0.055, Fig. 4a), while the small ants

preferred those with lower dispersal investment at

Motegi 2 (v2 = 7.250, P = 0.007, Fig. 4b). Diaspore

areas did not significantly affect the diaspore prefer-

ence in either ant guild (F. japonica: v2 = 0.050,

P = 0.823, small ants: v2 = 2.952, P = 0.086, data not

shown).

Discussion

For the ant-dispersed sedge, C. lanceolata, dispersal

investment was negatively correlated with canopy

openness. Although elaiosome size is often correlated

with seed size (Edwards et al. 2006), the trend in

C. lanceolata could not be explained by among-site

variations in seed size, because the seed body area was

not significantly correlated with canopy openness.

Instead, the trend of higher dispersal investment in

shadier sites could partially be explained by the higher

rust prevalence and hence the stronger selection

pressure for longer seed dispersal distances in shadier

sites. Furthermore, the cafeteria experiment confirmed

that diaspores with greater dispersal investment were

preferred by large ants with long seed dispersal

distances and avoided by small ants. The stronger

preference for greater rewards in large ants is consis-

tent with findings of previous studies (Hughes and

Westoby 1992; Leal et al. 2014) and suggests that the

trend revealed in this study reflects among-site differ-

ences in seed dispersal strategy rather than neutral

variations.

Natural enemies produce the escape benefit of seed

dispersal in a wide variety of plants by causing the

higher mortality around adult plants (O’Dowd and

Hay 1980; Howe et al. 1985; Packer and Clay

2000, 2003; Fragoso et al. 2003; Pigot and Leather

2008) and have been proposed as the main selective

pressure for the evolution of seed dispersal (Howe and

Smallwood 1982; Muller-Landau et al. 2003). Rust

fungi (Puccinia spp.) are the dominant pathogens of

C. lanceolata at our focal sites, and although the

pathogenicity of the rusts has not been determined for

C. lanceolata, rusts in general retard photosynthesis

through the formation of lesions and associated

reductions in green leaf area (Paul and Ayres 1987;

Springer 2002; Robert et al. 2005). Large portions of

leaf area were often covered by rust lesions in heavily

infected C. lanceolata, so this negative impact on

photosynthesis also appears to be the case with

C. lanceolata. Our seedling transplant experiment
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Fig. 3 Results of the seedling transplant experiment. The

vertical axis shows the rust severity in a seedling measured as

follows: 0, no lesions; 1, lesions observed on less than 50% of

the entire plant; and 2, lesions observed on 50% or more of the

entire plant. The error bars represent 95% confidence intervals

Table 2 Species composition of ants removing seeds in each

cafeteria experiment

Site Seed remover No. seeds removed

Motegi 1 Formica japonica 20

Tetramorium tsushimae 1

Lasius sp. 1

Motegi 2 Paratrechina flavipes 9

Crematogaster osakensis 1

Pheidole fervida 1

Pristomyrmex punctatus 1

Lasius sp. 1
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revealed that the rust severity in seedlings was reduced

by an increase in seed dispersal distances, from 30 to

400 cm, which corresponded with the shift in seed

dispersers, from small to large ants (Tanaka and

Tokuda 2016). The short-distance local dispersal of

rusts is consistent with previous results observed with

wheat rusts (Frezal et al. 2009; Farber et al. 2017),

implying the generality of our result. Although all

seedlings may ultimately be reached by rust spores

irrespective of seed dispersal distances, any delay in

spore attachment would reduce the risk of infection,

owing to the increased resistance to pathogens at later

developmental stages, as has been shown for many

pathogens (Develey-Rivière and Galiana 2007; Farber

andMundt 2017). Therefore, the large ant,F. japonica,

can provide plants with a much higher escape benefit

than small ants can, potentially explaining the greater

dispersal investment seen in sites with lower canopy

openness. The higher rust prevalence at shady sites

conforms to the general trend for fungal pathogens

(Roberts and Paul 2006), and might be a consequence

of either the susceptibility of fungi to UV-B or the

enhanced defense capacity of host plants in sunny sites

(Roberts and Paul 2006). Thus, the effect of canopy

openness on pathogen-mediated selective pressure for

dispersal investments may be a general phenomenon

among flowering plants in which pathogens are their

main natural enemies.

Although rust prevalence was positively correlated

with dispersal investments as predicted, the correla-

tion was weaker than that between canopy openness

and dispersal investments. This implies that factors

other than rust prevalence also mediate the effects of

canopy openness on dispersal investment. First,

because F. japonica prefers open habitats (Iwata

et al. 2005; Kwon et al. 2014) while smaller ants such

as P. flavipes and P. fervida prefer forests (Iwata et al.

2005; Kwon et al. 2014), F. japonica might be more

dominant at sites with increased canopy openness. The

dominance of long-distance dispersers (relative to

smaller ants) could have diminished the threshold

dispersal investment required for attracting large ants

and hence selected for lower dispersal investments to

conserve energy for seed production. The effect of the

dispersal easiness on the evolution of dispersal

mechanisms has been supported by several theoretical

models (Ezoe 1998; Encinas-Viso et al. 2014) andmay

have affected the selection for dispersal investments in

C. lanceolata independently from the escape- and

colonization-related selective factors. Second, the

paucity and ephemerality of safe sites in shady areas

might increase the colonization-related benefits of

dispersal, selecting for higher dispersal abilities

(Venable et al. 1998). On forest floors in temperate

regions, spatial autocorrelation with light availability

has been observed for distances up to 4 (von Wettberg

et al. 2005) or 6 m (Washitani and Tang 1991).

Moreover, in the case of the forest herb, Impatiens

capensis (Balsaminaceae), a ranking of sites within a

forest in terms of their light availability showed annual

variations in relation to gap dynamics (von Wettberg

et al. 2005). The large ant, F. japonica, can disperse

seeds an average distance of 425 cm, whereas the

average seed dispersal distances of smaller ants were

mostly less than 100 cm (Tanaka and Tokuda 2016),

therefore the fine-grained (\ 4 m) spatiotemporal

variation in light availability would select for higher

dispersal investments to attract large ants.
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Light is the main limiting resource in the forest

understory (Meekins and McCarthy 2000; Whigham

2004; Tinya et al. 2009; Westerband and Horvitz

2015; Augspurger and Salk 2017) and its availability

varies both spatially and temporally according to

differences in successional stages and anthropogenic

habitat modification (Martens et al. 2000; Breshears

2006; Lopez-Gallego and O’Neil 2014). The ability to

undergo light-dependent adjustments to phenotypes is

thus a key determinant of plant distributional ranges

(Sultan 2001; Godoy et al. 2011; Goulart et al. 2011).

Previous studies on adaptation or phenotypic plasticity

to light availability have mostly focused on vegetative

traits (von Wettberg et al. 2005; Gotsch et al. 2010;

Godoy et al. 2011; Goulart et al. 2011; Lopez-Gallego

and O’Neil 2014). For example, increases in specific

leaf area and height via local adaptation and pheno-

typic plasticity enabled an alien herb, Prunella

vulgaris (Lamiaceae), to colonize forests from open

sites (Godoy et al. 2011). In contrast, to our knowl-

edge, only one study has focused on seed dispersal

traits (Venable et al. 1998), despite much evidence of

the important demographic consequences of seed

dispersal (Hanzawa et al. 1988; Packer and Clay

2000, 2003; Fragoso et al. 2003; Cheptou et al. 2008;

Blake et al. 2009; Effiom et al. 2013) and the rapid

evolution of seed dispersal traits (Cheptou et al. 2008;

Galetti et al. 2013). In the only study which dealt with

dispersal adaptation to light environments, increased

epizoochorous dispersal ability of a seed dimorphic

herb was observed at sites with increased canopy

closure (Venable et al. 1998).We found the same trend

in the ant-dispersed sedge C. lanceolata, implying a

common response of seed dispersal traits to light

environments among a wide variety of plants with

distinct seed dispersal modes. It should be noted that

contrary to the seed dimorphic herb examined by

Venable et al. (1998), realized dispersal ability of C.

lanceolata is not directly linked to dispersal invest-

ments, the potential dispersal ability, due to between-

site differences in ant species composition. For

example, despite of the lowest dispersal investments

at Motegi 2 across seven sites examined, realized

dispersal ability would be high at Motegi 2, because

the large ant F. japonica was particularly abundant

there. The relationship between canopy openness and

realized dispersal ability remains to be investigated in

future.

The relationship between canopy openness and

dispersal investments found in the ant-dispersed

sedge, C. lanceolata, offers a new model system with

which to investigate the evolution of dispersal in

flowering plants. Specifically, the small spatial scale

of myrmecochory allows sufficient replication of field

experiments across multiple sites, and enables power-

ful tests to be performed to explore the effect of

canopy openness on the fitness consequences of

greater dispersal investments. The advantage in terms

of spatial replication has so far been exploited to

evaluate the ecological benefits of myrmecochory

such as predator avoidance (Manzaneda et al. 2005),

avoidance of intraspecific competition (Leal et al.

2015), and directed dispersal (Manzaneda and Rey

2012). However, our results indicate that the advan-

tage of myrmecochory can also be utilized for testing

general hypotheses on the evolution of dispersal in

flowering plants, including the effect of host-specific

natural enemies on the evolution of long-distance seed

dispersal (Muller-Landau et al. 2003). For C. lanceo-

lata, future seedling transplant experiments at each of

the current focal sites will be conducted to evaluate the

validity of the hypotheses that greater seed dispersal

distances are favored as canopy openness decreases.
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