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Abstract

Pseudoponera stigma (F.) and Pseudoponera gilberti (Kempf) (Hymenoptera: Formicidae) are closely related Neotropical ants, often misidentified due 
to their morphological similarities. These species also share behavioral and ecological characters. In this study, we examined cytogenetic approaches 
as a tool to aid identification of P. stigma and P. gilberti. Both numerical and morphological karyotypic variations were identified based on different 
cytogenetic techniques. The karyotype formula of P. stigma, 2K = 10M + 4SM differs from that of P. gilberti, 2K = 10M + 2SM, and the CMA3

+/DAPI− sites 
also differ, allowing both species to be distinguished by chromosomal characters.
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Resumen

Pseudoponera stigma (F.) y Pseudoponera gilberti (Kempf) (Hymenoptera: Formicidae) son hormigas neotropicales muy estrechamente relacionadas 
que a menudo son mal clasificadas debido a sus similitudes morfológicas. Estas especies también comparten caracteres de comportamiento y ecoló-
gicas. En este estudio, la citogenética fue utilizado como una herramienta para la caracterización y delimitación taxonómica de P. stigma y P. gilberti. 
Se describen variaciones cariotípicas numéricos y morfológicas en base a diferentes técnicas de citogenética. La fórmula cariotipo de P. stigma, 2K = 
10M + 4SM difiere de la de P. gilberti, 2K = 10M + 2SM, así como las localizaciones de los sitios CMA3 

+/DAPI−, lo que permite distinguir las especies 
tanto por caracteres cromosómicas.
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Previously published cytogenetic studies of 95 ant morphospecies 
in the subfamily Ponerinae revealed high variation in chromosome 
number, ranging from 2n = 8 to 2n = 120 (Lorite & Palomeque 2010; 
Mariano et al. 2012). An earlier study of Pseudoponera Emery (Maria-
no et al. 2012) with conventional cytogenetics included 3 species pre-
viously placed in the genus Pachycondyla (Schmidt & Shattuck 2014). 
These species have karyotypes with both low chromosome numbers 
and high frequency of metacentric chromosomes. The karyotypic for-
mula 2K = 10M + 2A was reported for Pseudoponera gilberti (Kempf) 
(Kempf 1960), 2K = 12M for Pseudoponera stigma (F.) (Fabricius 1804), 
and 2K = 14M for Pseudoponera succedanea (Roger) (Roger 1863).

Studies of karyotype evolution in ants suggested that karyotypes 
with low chromosome numbers and large chromosomes exhibit bas-
al characteristics whereas karyotypes with larger numbers of small 
chromosomes represent derived states (Imai et al. 1994). The trend 
towards formation of smaller chromosomes by centric fission could 
be driven by the advantage of reducing the frequency of deleterious 
chromosomal translocations resulting from physical interactions. This 
results in an increase in the chromosome number and in the acro-

centric and telocentric content. Additionally, smaller acrocentric and 
telocentric chromosomes could be converted into meta- and submeta-
centric chromosomes by pericentric inversion, and centric fusions can 
also occur (Imai et al. 1986, 1988). Based on these assumptions, we 
hypothesized that the karyotypes of P. stigma and P. gilberti would 
share basal characteristics (Mariano et al. 2012).

Chromosome number and morphology have been the characters 
most commonly used in comparative cytogenetic studies of ants, 
especially among closely related species that are difficult to dis-
tinguish based on morphological characters (Mariano et al. 2012). 
However, other cytogenetic methods have been used recently, such 
as CMA3/DAPI fluorochrome staining in Dinoponera lucida Kempf 
(Mariano et al. 2008), Wasmannia auropunctata (Roger) (Souza et 
al. 2011), Odontomachus Latreille, Anochetus Mayr (Santos et al. 
2010), Mycocepurus goeldii (Forel) (Barros et al. 2010), and Acro-
myrmex striatus (Roger) (Cristiano et al. 2013). To aid in distinguish-
ing P. stigma and P. gilberti, we characterized the chromosomes by 
conventional cytogenetic technique and CMA3/DAPI fluorochrome 
staining.
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Materials and Methods

Colonies of P. stigma and P. gilberti were collected in forest areas 
or cocoa plantations in the states of Pernambuco, Bahia, and Espírito 
Santo, Brazil (Fig. 1; Table 1), from Oct 2011 to Aug 2013. Specimens 
were identified based on Mackay & Mackay (2010), Schmidt (2013), 
and Schmidt & Shattuck (2014) in addition to the original descriptions 
of each species. Vouchers from each sampled nest were deposited in 
the CPDC collection of the Laboratório de Mirmecologia CEPEC/CE-
PLAC at Ilhéus, Bahia, Brazil.

Metaphase plates were obtained from cerebral ganglion cells of 
prepupae by following the methods of Imai et al. (1988). Prepared 
slides were stained with Giemsa solution in 0.06 M phosphate buffer, 
pH 6.8, at a ratio of 1:30 for 30 min. Metaphase slides of high quality 
were photographed with an Olympus BX-41 photomicroscope with a 
digital camera attached. Karyograms were organized with the use of 
Adobe Photoshop CS6 software 13.0x 64, arranged according to Le-
van et al. (1964), and karyotypic formulas were determined from the 
karyograms.

Base-specific fluorochrome double staining with chromomycin A3 
(CMA3) and 4,6-diamidino-2-phenilindole (DAPI) followed the method 
of Schweizer (1976), with modifications proposed by Guerra & Souza 
(2002). Slides were mounted with Vectashield mounting medium and 
covered with a coverslip. Slides were analyzed in a DMRA2 Leica epi-

fluorescence photomicroscope and images captured with the Leica 
IM50 software (Leica Microsystems Imaging Solutions Ltd., Cambridge, 
United Kingdom).

Results

Thirteen colonies and 182 specimens of both species were sam-
pled, although P. gilberti was the most frequently collected (Table 1). 
Cytogenetic analysis based on multiple samples of P. gilberti and P. 
stigma consistently showed a distinct karyotype for each species. Chro-
mosome numbers and karyotypic formulas for each nest sampled and 
analyzed are given in Table 1.

The karyotype of P. gilberti showed 2n = 12 (females) and n = 6 
(males), with the 1st pair larger than the remaining chromosomes. 
With the exception of the 4th chromosome pair that was submetacen-
tric, the remaining chromosomes were metacentric (Figs. 2a, b, and 
e). The karyotypes of P. stigma had 2n = 14 (females) and n = 7 (males) 
chromosomes (Figs. 2c, d, and f). In this species, the 1st and 2nd pairs 
were larger and differed in size whereas the remaining chromosomes 
were very similar in length. The 3rd and 4th pairs were submetacen-
trics and the remaining chromosomes were metacentric.

Fluorochrome staining in P. gilberti revealed the presence of a 
single and conspicuous CMA3

+/DAPI− interstitial marking, indicating a 
segment rich in GC base pairs, in the 1st pair of chromosomes (Fig. 2e). 
In P. stigma, the CMA3

+/DAPI− stained segment was located on the short 
arm of the 4th chromosome pair (Fig. 2f).

Discussion

Both P. stigma and P. gilberti have very similar external morphology 
(Kempf 1960; Mackay & Mackay 2010). They are distributed sympat-
rically and mate at the same time of year (Mackay & Mackay 2010). 
These species differ mainly in the shape and sculpturing of clypeus and 
mandibles (Kempf 1960; Mackay & Mackay 2010).

High morphological similarity and the complex taxonomy of this 
group, especially prior to the revision of Pachycondyla (Mackay & 
Mackay 2010), made identification of these species difficult, and may 
have contributed to conflicting results in previous studies (e.g., Mari-
ano et al. 2012). In the present study, which included a large sample 
size, the karyotypes with 2n = 12 (2K = 10M + 2SM) for P. gilberti and 
2n =14 (2K = 10M + 4SM) for P. stigma were consistently verified in dif-
ferent localities, a result that reinforces the importance of integrated 
studies using both morphological and genetic data to aid in delimitat-
ing similar taxa.

The karyotypes of P. gilberti and P. stigma, with few chromosomes 
and a predominance of metacentric and submetacentric chromosomes, 

Table 1. Collection localities, species, geographic coordinates, number of nests, and specimens sampled.

Collection locality (municipality)–Brazilian state Species

Geographic coordinates
No. of nests  

(No. of specimens) 2n (n)
Karyotype formula 

(2K)Latitude Longitude

Igrapiúna (Res. Michelin)–BA P. gilberti 13.6458°S 39.1706°W 1 (12) 12 (6) 10M + 2SM
Itajuípe (CEPLAC)–BA P. gilberti 14.6850°S 39.3669°W 1 (18) 12 (6) 10M + 2SM
Moreno–PE P. gilberti 8.1400°S 35.1494°W 2 (38) 12 10M + 2SM
Porto Seguro (ESPAB)–BA P. gilberti 16.4192°S 39.1611°W 2 (23) 12 (6) 10M + 2SM
Sooretama–ES P. gilberti 19.1472°S 40.0706°W 1 (7) 12 10M + 2SM
Una (Faz. Ararauna)–BA P. gilberti 15.2111°S 39.1847°W 2 (15) 12 (6) 10M + 2SM
Ilhéus (CEPLAC)–BA P. stigma 14.7856°S 39.2222°W 3 (59) 14 (7) 10M + 4SM
Valença (Faz. Expedito)–BA P. stigma 13.3361°S 39.1706°W 1 (10) 14 (7) 10M + 4SM

Fig. 1. Map of collection sites. The circles represent the collection points.
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are in contrast to those of other species of Ponerini, which have up to n = 
60 chromosomes. Low chromosome number is thought to be plesiomor-
phic (Imai et al. 1994; Lorite & Palomeque 2010; Mariano et al. 2012).

Other Ponera-group genera, such as Diacamma Mayr (Imai et al. 1984; 
Karnik et al. 2010), Ponera Latreille (Imai & Kubota 1972; Imai et al. 1988; 
Lorite & Palomeque 2010), and Cryptopone Emery (Imai & Kubota 1972; 
Imai et al. 1977, 1983), also have species with low chromosome numbers. 
Schmidt (2013) delimited a monophyletic clade of Ponera-group genera 
based on molecular data, but no morphological synapomorphies have 
been identified that support the clade (Schmidt & Shattuck 2014).

The CMA3
+/DAPI− markings aided in characterizing the karyotypes 

and distinguishing between the 2 species. The distinct CMA3
+/DAPI− sites, 

which are chromosomal segments rich in GC base pairs, in the karyo-
types of P. gilberti (1st pair) and P. stigma (4th pair) may correspond to 
their Nucleolus Organizer Regions, as observed in other insects (Mani-
cardi et al. 1996; Kuznetsova et al. 2001; Grozeva et al. 2004; Almeida et 
al. 2006; Santos et al. 2010). This correlation, however, must be further 
confirmed with the Nucleolus Organizer Regions banding technique.

Cytogenetic information combined with morphological data was 
effective in distinguishing P. stigma and P. gilberti. The original descrip-

Fig. 2 Metaphases, (a–d) karyograms, and (e and f) karyograms with fluorochrome staining CMA3/DAPI: (a) female and (b) male of P. gilberti; (c) female and (d) 
male of P. stigma; (e) CMA3

+ band on the 1st pair, P. gilberti; (f) CMA3
+ band on the 4th pair, P. stigma. Bar = 10 µm.
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tion of P. stigma was little detailed (Fabricius 1804; Mackay & Mackay, 
2010). Individuals of this species are identified through comparison of 
morphological, biological, and ecological characters, which may cause 
errors in identification. A more detailed morphological analysis of P. 
stigma, with a new description of this species is currently in prepara-
tion.
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