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Abstract

The symbiosis between fungi and leaf-cutting ants (Hymenoptera: Formicidae) has aroused the interest of researchers about the mechanism used by
ants to select plants. The nutritional needs of the fungus garden, and the absence of potentially deleterious substances from plants, are criteria for
selection by foraging workers. This is supported by behavioral experiments using fungicide with baits (citrus pulp) or forage plants highly accepted
by leaf-cutting ants. The fungus garden is hypothesized to emit a volatile semiochemical in response to a fungicide, which informs ants that a plant
is unsuitable for its growth. The objectives of our study were to identify the volatile compounds released by the fungus garden of leaf-cutting ants
in response to a fungicide, as well as to determine the behavioral response of workers to healthy and unhealthy fungus gardens. The results showed
no difference in the proportion of volatile compounds released by either healthy or unhealthy fungus gardens. Analysis of the responses of ants to
healthy or unhealthy fungus gardens in a dual-choice experiment revealed a strong attraction to the fungus garden, regardless of its health status. We
therefore conclude that no volatile semiochemicals are emitted by the fungus garden due to the action of deleterious substances.
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Resumen

La simbiosis entre los hongos y las hormigas cortadoras de hojas (Hymenoptera: Formicidae) ha despertado el interés de los investigadores en el
mecanismo utilizado por las hormigas para seleccionar las plantas. Las necesidades nutricionales del jardin de los hongos y la ausencia de sustancias
potencialmente dafiinas de las plantas son criterios de seleccion de los trabajadores en busqueda de alimento. Esto es respaldado por experimentos
de comportamiento que usan fungicidas con cebos (pulpa de citricos) o plantas de forraje altamente aceptadas por HCH. El jardin de hongos emite un
semioquimico volatil en respuesta a un fungicida, que informa a las hormigas que una planta no es apta para su crecimiento. El objetivo de nuestro
estudio fue identificar los compuestos volatiles liberados por el hongo jardin de HCH en respuesta a un fungicida, asi como la respuesta conductual
de los trabajadores hacia los jardines de hongos saludables y no saludables. Los resultados no mostraron diferencias en la proporcidon de compuestos
liberados por jardines de hongos saludables y no saludables. El analisis de las respuestas de las hormigas a los jardines de hongos saludables y no
saludables en un experimento de doble eleccidn reveld una gran atraccion para el jardin de los hongos, independientemente de su estado de salud.
Por lo tanto, concluimos que no hay semioquimicos volatiles emitidos por el jardin de hongos bajo la accién de sustancias nocivas.

Palabras Clave: Formicidae; Atta; hongo simbidtico

Leaf-cutting ants (Hymenoptera: Formicidae) have a mutualism
with the fungus Leucoagaricus gongylophorus (Heim) Moeller (Agari-
caceae), the primary food source of the colony (Schultz et al. 2005;
Holldobler & Wilson 2009a). These ants select and cut several plant
species for the cultivation of their symbiotic fungus (Weber 1972). Con-
sequently, some species of ants are known principally as pests of crops
in the Neotropical region (Della Lucia & Souza 2011). Plant selection
involves the proper choice of plant species that are suitable for devel-
opment of the symbiotic fungus (Holldobler & Wilson 1990), although

the existence of an ant-fungus communication for the correct selection
of plants is only hypothesized (Ridley et al. 1996; North et al. 1999;
Green & Kooij 2018).

Studies investigating the existence of this communication have used
a protein synthesis inhibitor, cycloheximide (CHX) (Obrig et al. 1971;
Schneider-Poetsch et al. 2010). This substance, reported to be a fungi-
cide, has been applied in behavioral studies on leaf-cutting ants. The ef-
fect of cycloheximide on the fungus garden was found to be responsible
for changes in the foraging behavior of leaf-cutting ant workers, because
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cycloheximide is not identified as a harmful compound for the colony in
the first contact with the workers (Ridley et al. 1996). North et al. (1999)
hypothesized that a semiochemical emitted by the fungus garden regu-
lates the selection of plants by leaf-cutting ant foragers, and is interpret-
ed as communication between the symbiont fungus and leaf-cutting ant
workers. The authors showed that the ants learn to reject plant material
that contains chemicals injurious to the fungus. After an initial period
of acceptance, ants from laboratory nests stopped harvesting granular
bait containing a fungicidal agent (cycloheximide) and orange peel. Sub-
sequently, many behavioral studies have used cycloheximide to under-
stand the effects on the long-term olfactory memory of leaf-cutting ants.
Some of these studies support the existence of an ant-fungus commu-
nication through a semiochemical volatile compound that has not yet
been identified and whose presence is only hypothesized (Cazin et al.
1989; Ridley et al. 1996; North et al. 1999; Herz et al. 2008; Saverschek
et al. 2010; Saverschek & Roces 2011; Thiele et al. 2014; Falibene et al.
2015; Arenas & Roces 20163, b, 2017).

The objective of our study was to test the hypothesis proposed by
North et al. (1999). This hypothesis suggests that a volatile semiochem-
ical emitted by the fungus garden regulates the selection of plants by
leaf-cutting ant foragers, which is interpreted as a communication be-
tween the symbiotic fungus and leaf-cutting ant workers. Specifically,
we sought to identify the volatile compounds released by the fungus
garden of leaf-cutting ants and to determine the behavioral response
of workers to healthy and unhealthy fungus gardens.

Materials and Methods

COLONIES

Colonies of Atta sexdens rubropilosa Forel (Hymenoptera: Formi-
cidae), known as satvas, were used for the experiments, which were
kept in the Laboratory of Social Insects, College of Agricultural Scienc-
es, Sdo Paulo State University-UNESP, Botucatu, Sdo Paulo, Brazil. The
queen-right colonies, collected in Mar 2016, were 2 yr old at the start
of the experiments. Each colony has a container (15 cm x 15 cm x 15
cm) with a fungus garden, and was fed Acalypha spp. and Ligustrum
spp. leaves and stems. The fungus garden container was connected
to 2 additional chambers, 1 for foraging of the supplied plants and an-
other for waste deposition. The colonies were kept at a temperature
of 24 + 2 °C, relative humidity of 80%, and a 14:10 h (L:D) photoperiod
in the laboratory.

PREPARATION OF ORANGE PEEL PELLETS

The pellets consisted of small granules made of orange peels, which
were dehydrated for 72 h at 50 °C. The orange peels were from organic
crops. The dehydrated peels were ground into a powder in a milling pro-
cess. Next, 1.8 g of this orange peel powder was homogeneously mixed
with 0.2 g carboxymethyl cellulose, and 0.025 g cycloheximide (Sigma-
Aldrich, St. Louis, Missouri, USA) dissolved in 2.5 mL water was added to
produce the orange granules with cycloheximide. The matrix was trans-
ferred to a 20 mL syringe to produce the granules, which were allowed to
dry for 24 h at 25 °C. The same method was used to produce pellets with-
out the fungicide and without cycloheximide. The pellets were cut into
equal-size pieces and stored in a freezer inside plastic pots until the time
of use (method adapted from Ridley et al. 1996, and Sousa et al. 2017).

VOLATILES RELEASED BY THE FUNGUS GARDEN

For assessment of the volatiles released by the fungus garden, 2 ex-
perimental groups were compared: (a) colonies receiving cycloheximide
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pellets for 7 d, followed by cycloheximide-free pellets for an additional 7
d, totalling 14 d (N = 6); (b) colonies receiving cycloheximide-free pellets
for 14 d (N = 6). Fungus garden samples (0.75 g) were collected on differ-
ent days from the 2 groups: d 1 (beginning of the experiment), d 7, and
d 14. According to Sousa et al. (2017), the decline of the fungus garden
and its reduction in volume indicate that it is unhealthy, due to cyclohexi-
mide effects (Fig. 1). The collected fungus garden samples (healthy and
unhealthy) were submitted to chromatography analysis.

CHROMATOGRAPHY ANALYSIS

The chemical study of the fungus garden was conducted at the
Central Laboratory, Department of Agriculture, College of Agricultural
Sciences, Sdo Paulo State University-UNESP, Botucatu, Sdo Paulo, Bra-
zil. A Perkin Elmer TurboMatrix™ Headspace (Perkin Elmer, Wellesley,
Massachusetts, USA) without a trap, connected to a Perkin Elmer SQ8 T
GC/MS (Perkin Elmer, Wellesley, Massachusetts, USA), operating in the
headspace mode without the trap, was used for this experiment. The
Headspace conditions were: vial equilibration at 80 °C for 5 min, needle
temperature of 90 °C, transfer line temperature of 125 °C, and helium
as carrier gas at 20 psi. The mass spectrometer conditions were: scan
range of 30 to 300 Daltons, scan time of 0.1 s, source temperature of
180 °C, and inlet temperature of 200 °C. A slightly polar Elite 5 column
(5% phenyl-silicone, 30 m x0.25 mm x 0.25 um) (Perkin Elmer, Shelton,
Connecticut, USA) was used. This thick-film column provided sufficient
retention to separate the early-eluting, most volatile components, and
provided the dynamic range necessary to separate both high-level and
low-level components present in the matrix.

CHOICE BIOASSAYS

Ant responses to healthy and unhealthy fungus gardens:
Y-shaped choice system

To determine whether leaf-cutting ant workers are attracted to
healthy and unhealthy fungus gardens, we monitored the worker
choice in 6 experimental bioassays, 12 times per bioassay: (1) d 1,
healthy fungus vs. healthy fungus; (2) d 1, healthy fungus vs. no fungus;
(3) d 7, unhealthy fungus vs. healthy fungus; (4) d 7, unhealthy fungus
vs. no fungus; (5) d 14, unhealthy fungus vs. healthy fungus; (6) d 14,
unhealthy fungus vs. no fungus.

A simple Y-shaped choice system made of transparent glass was
used, which consisted of branches of equal length (40 cm) and width
(3 cm), with the upper branches arranged at an angle of 60° (Fig. 2).
The worker container was coupled to the base branch of the Y trail. A
plastic tray was installed on each upper branch where the choices were
provided randomly in a plastic container.

Fifty ants with a mean head width of approximately 2.2 mm were
introduced into the working container to allow bioassay choices con-
taining 0.5 g (500 mg) of clean fungus, after removing ants, eggs, lar-
vae, and pupae from the fungus. The number of workers was counted
at 5 min intervals for 30 min, corresponding to the worker choice in
each container. Each bioassay was repeated 12 times.

Ant responses to extracts of healthy and unhealthy fungus:
simultaneous choice

The fungus extracts were obtained using pieces of the fungus from
the colonies that received cycloheximide pellets and cycloheximide-
free pellets as described above. The fungus pieces were cleaned with
needles, removing all brood and workers, and about 500 mg of fungus
was used (Viana et al. 2001). These fungus gardens were immersed in
5 mL dichloromethane for 2 h, filtered with filter paper (Qualy®, Sdo
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Fig. 1. Fungus garden. A: Fungus healthy; B: fungus with incorporation of pellets with cycloheximide on d 7 of the experiment; and C: fungus
on d 14 of the experiment.

José dos Pinhas, Parana, Brazil), and kept at low temperature. These
extracts were used in the bioassays.

To determine whether leaf-cutting ant workers are attracted to
healthy and unhealthy fungus extracts, filter paper disks (Qualy®, Sao

20 cm

L 60°

3cm

40 cm

Fig. 2. Olfactometer model used in the experiment of ant respons-
es to healthy or unhealthy fungus in the Y-shaped choice system.

José dos Pinhas, Parand, Brazil) (0.6 cm diam) with the extract were
offered in the foraging arena in 5 treatments: (1) 10 disks with healthy
fungus extract; (2) 10 disks with unhealthy fungus extract from d 7;
(3) 10 disks with unhealthy fungus extract from d 14; (4) 10 disks with
dichloromethane; and (5) 10 disks without dichloromethane and ex-
tracts as control.

Four colonies were used and 7 trials were conducted per colony, to-
taling 350 disks offered per colony. The bioassay was terminated when
the treatment was completely transported by foragers into the colony.
The total number of transported disks was counted for each treatment.

STATISTICAL ANALYSIS

First, the Shapiro-Wilk test was applied to determine whether the
data were normally distributed or not. The proportion of aldehyde com-
poundsond 1, 7, and 14 was compared between colonies that received
cycloheximide pellets and those that received pellets without cyclohexi-
mide, using the Mann-Whitney test for independent samples. The same
test was used for comparison of the data of the Y-shaped choice system.
The total number of transported disks was submitted to the Kruskal-Wal-
lis test and Student-Newman-Keuls test as a post-test. A level of signifi-
cance of 1% was adopted for all tests. The analyses were done through
the program BioEstat 5.0 (Manaus, Amazonia, Brazil).
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Results

The fungus garden emitted 4 volatile substances, 2-methyl-
propanal, 3-methylbutanal, pentanal, and hexanal, all of which are
aldehydes (Fig. 3). The proportion of aldehydes was similar in the 4
colonies that received cycloheximide pellets and the colonies that
received cycloheximide-free pellets (Fig. 4). We found no significant
differences in the proportion of 2-methylpropanal [d 1 (U =1.29; n =
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4;P>0.01),d7(U=2.16;n=4;P>0.01),d14 (U=1.87;n=4; P>
0.01)]; 3-methylbutanal [d 1 (U=1.01;n=4; P>0.01),d 7 (U = 2.02;
n=4;P>0.01),d14 (U=1.88; n=4; P>0.01)]; pentanal [d 1 (U =
2.30;n=4;P>0.01),d7(U=0.86;n=4; P>0.01),d 14 (U=0.86; n =
4; P>0.01)]; or hexanal [d1(U=0.57;n=4; P>0.01),d 7 (U=0.10;
n=4;P>0.01),d 14 (U=1.29; n = 4; P> 0.01)] between colonies
that received cycloheximide pellets and those that received pellets
without cycloheximide.
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Fig. 3. Volatiles emitted by the fungus. A: Healthy fungus; B: fungus without cycloheximide for 7 d; C: fungus without cycloheximide for 14 d;
D: fungus with cycloheximide for 7 d; E: fungus with cycloheximide for 14 d.
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Fig. 4. A: Mean percent area and standard deviation (confidence
interval) of volatiles emitted by the fungus; B: healthy fungus and fun-
gus with cycloheximide for 7 d; C: healthy fungus and fungus with cy-
cloheximide for 14 d.

Analysis of ant responses to healthy and unhealthy fungus gar-
dens using a Y-shaped choice system (Fig. 2) revealed a strong at-
traction to the fungus garden, regardless of its health status (Fig. 5).
We observed significant differences between healthy fungus vs. no
fungusond 1 (U=42;n=12; P<0.01), between unhealthy fungus vs.
no fungusond 7 (U =28.8; n=12; P<0.01), and between unhealthy
fungus vs. no fungusond 14 (U =41.5; n=12; P<0.01). On the other
hand, there were no significant differences between healthy fungus
vs. healthy fungus on d 1 (U = 0.54; n = 12; P > 0.01), between un-
healthy fungus vs. healthy fungus ond 7 (U = 24.8; n = 12; P > 0.01),
or between unhealthy fungus vs. healthy fungus on d 14 (U = 0.054;
n=12; P>0.01).

As expected, a significant difference was detected among treat-
ments with healthy and unhealthy fungus extracts (Fig. 6) (Kruskal-
Wallis test, H = 27.15; df = 4; P < 0.001). The disks with healthy
fungus extract were highly transported by foragers (175 disks), with
a significant difference compared to disks with unhealthy fungus
extract on d 7 (59 disks, P < 0.001) and disks with unhealthy fungus
extract on d 14 (89 disks, P < 0.001). However, the number of trans-
ported disks with healthy fungus extract was not significantly dif-
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ferent from the number of disks with dichloromethane (155 disks,
P =0.5542), or of disks without dichloromethane and extracts (182
disks, P = 0.7858).

Discussion

One of the major findings in this study is that the aldehyde com-
pounds released by the fungus garden were the same in colonies that
received cycloheximide pellets and colonies that received cyclohexi-
mide-free pellets on d 1, 7, and 14 (Fig. 3). This result does not cor-
roborate the study suggested by North et al. (1999) that a volatile
semiochemical emitted by the fungus garden regulates the selection
of plants by leaf-cutting ant foragers, which is interpreted as a commu-
nication between the symbiotic fungus and leaf-cutting ant workers.
They showed that the ants learn to reject plants containing chemicals
that are harmful to the fungus. After an initial period of acceptance,
ants from laboratory nests stopped harvesting granular bait containing
a fungicidal agent (cycloheximide) and orange peel. In contrast, stud-
ies show that cycloheximide causes mortality to leaf-cutting ant and
fungal workers, and thus may promote pellet rejection due to worker
mortality and fungus garden breakage (Sousa et al. 2017).

Approximately 250 volatile organic compounds have been iden-
tified in 129 fungal species (126 Macromycetes and 3 Micromycetes
pathogenic for plants: Puccinia), where they occur as aldehydes, ke-
tones, alcohols, and phenols, among many others (Chiron & Miche-
lot 2005). However, in our study, the fungus garden emitted 4 vola-
tile substances, 2-methylpropanal, 3-methylbutanal, pentanal, and
hexanal, which are aldehydes. The flowers, vegetative parts, and roots
of plants are known to release more than 1,000 volatile organic com-
pounds, principally 6-carbon aldehydes, alcohols, esters, and vari-
ous terpenoids (Pichersky et al. 2006). In some cases, plants release
volatile compounds when damaged by herbivores (Tumlinson et al.
1999). In the case of leaf-cutting ants, the leaves of plants are cut, pro-
cessed into a pulp, and incorporated into the fungus garden surface
by workers (Camargo et al. 2007; Garrett et al. 2016). It is likely that
these leaf fragments in the fungus garden emit volatile substances, as
observed in mechanically damaged leaves of poplar cuttings (Popu-
lus simonii Carriére and P. pyramidalis Salisb.) (Salicaceae) (Hu et al.
2008). These authors identified 16 aldehydes: acetaldehyde, butanal,
pentanal, hexanal, heptanal, octanal, nonanal, decanal, undecanal,
dodecanal, tetradecanal, (Z)-3-hexenal, (E)-2-hexenal, (E)-2-nonenal,
benzaldehyde, and furfural. Interestingly, most of these substances
were released 24 h after wounding (Hu et al. 2008), suggesting that
the same may occur in the fragmented leaves of the fungus garden of
leaf-cutting ants.

It is known that unhealthy plant parts, mechanical damage,
pathogen infections, and herbivore injuries can induce the rapid syn-
thesis of volatile compounds such as hexenal and hexanal (Arimura
et al. 2000). Analogously, the symbiotic fungus degrades leaves as a
substrate for its colonization, and may induce the release of some al-
dehydes. Leucoagaricus gongylophorus is a basidiomycetous fungus
that produces specialized hyphae (gongylidia) for feeding ants and
larvae (Holldobler & Wilson 2009), as well as enzymes for lignocellu-
lose degradation (Boyd & Martin 1975; Martin et al. 1975; Schigtt et
al. 2008, 2010; Aylward et al. 2013; Grell et al. 2013; Kooij et al. 2014,
2016). The degradation of lignin by basidiomycetes produces a vari-
ety of extracellular aromatic metabolites (Jong et al. 1994), especially
aldehydes (Gallois et al. 1990) such as hexanal, heptanal, 2-butenal,
2-methyl-2-butenal, 4-nonenal, and 2,4-decadienal. These findings
support the production of some aldehydes by the fungus garden dur-
ing lignocellulose degradation.



The worker responses to healthy and unhealthy fungus gardens in-
dicated an attraction to the fungus garden (Fig. 5). This attraction might
be attributed to the presence of ant hydrocarbons and large quanti-
ties of n-alkanes in the fungus garden that constitute a signal for leaf-
cutting ant workers (Viana et al. 2001). This fact also may explain why
the workers did not distinguish between healthy and unhealthy fungus
gardens (Fig. 5), although the worker in a colony can take the unhealthy
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fungus to the waste chamber (Sousa et al. 2017). This observation was
corroborated when the healthy and unhealthy fungal extracts were
tested, suggesting that workers cannot distinguish the health status
of the fungus (Fig. 6). It is likely that behavioral results reinforce the
lack of a volatile semiochemical emitted by the fungus garden, as sug-
gested by North et al. (1999), because workers must avoid breakdown
products from unhealthy or dead fungi. Besides, the choice of these
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ants could have been affected by many other factors, such as the type
of workers, the way the extracts were produced, the way the healthy
and unhealthy parts were selected, etc.

Performing behavioral experiments, the study of North et al.
(1999) concluded that highly volatile compounds emitted by the
fungus garden directly affect the foraging behavior of leaf-cutting
ant workers. The major flaw in their study is that they did not iden-
tify any volatile compounds from unhealthy or dead fungi because
of the effect of cycloheximide. At high concentrations, as used by
Ridley et al. (1996), cycloheximide causes the death of workers and
the fungus garden (Sousa et al. 2017, 2018). Foraging behavior is
probably affected by the toxicity of cycloheximide to workers and
the fungus garden, and is not a behavioral response to the volatile
semiochemical.

In conclusion, we observed that healthy and unhealthy fungus gar-
dens emitted 4 volatile substances at the same proportion, and that
workers did not discriminate between them. Thus, we hypothesize that
non-volatile semiochemicals may be involved.
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