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In all but a few evolutionarily derived ants, female eggs develop 
into either gynes (future reproductive queens) or life-time 
unmated workers. Such differentiated castes are comparable to 

germ-lines and soma—an analogy that motivated Wheeler1 to char-
acterize ant colonies as superorganisms. Irreversible transitions to 
superorganismality have also evolved in corbiculate bees, vespine 
wasps and evolutionarily derived termites, always from ancestors 
where colonies have a single strictly monogamous queen, similar 
to obligatory multicellular eukaryotes having evolved from ances-
tors initiating new individuals from a single zygote2 (reviewed by 
ref. 3). Because all metazoans have a common ancestor, their funda-
mental cell types are homologous, just like queen and worker castes 
should be homologous when all ants have a single common ances-
tor4. This topic has been exhaustively explored in metazoans5 where 
homologous character development has now been confirmed to be 
encoded and largely regulated by the ancestral gene regulatory net-
work (GRN), consisting of a set of orthologues that interact in shap-
ing homologous phenotypic traits6. However, the ontology of traits 
that characterize social insect superorganisms has received much 
less attention, and evidence for the existence of GRNs that shaped 
their independent origins has remained ambiguous7–9.

Detecting ancestral GRNs for superorganismal caste phenotypes is 
likely to be difficult because these genes will have become extensively 
rewired over evolutionary time. They will also have diversified when 
subfamilies and genera evolved, analogous to later adjustments in 
metazoan developmental integration and cell type diversification10,11. 
Other genes that presently affect caste differentiation and social 
behaviour may be specific for subfamilies or genera, and thus without 
sister lineage orthologues12–16. Such lineage-specific genes may have 
facilitated new adaptations for work coordination, communication or 
foraging9,15,16, which is again analogous to how we understand evolu-
tionary elaborations across lineages of multicellular animals17,18.

Previous studies in honeybees and ants have shown that both 
ancestral and novel genes have shaped caste differentiation. Many 
genes upregulated in honeybee worker larvae have no Drosophila 
homologues, suggesting they are novel12—similar to whole-body 
transcriptome comparisons of adult Temnothorax longispinosus ants 
and larvae of Monomorium pharaonis14,19. However, these single-
species studies could not capture the diversity in life history and 
social structure across species20, and the use of whole-body tran-
scriptomes precludes detecting caste differences at the homolo-
gous organ level. The power of these studies to reconstruct GRNs 
underlying social traits therefore remained limited21,22 compared 
with what has been possible for mammalian organs23,24. The only 
comparative ant study so far used a whole-body approach and 
detected only a single gene with caste-biased expression across 16 
species8. The use of whole-body transcriptomes without reference 
genomes8 also implies that gene orthology across species cannot be 
established (Supplementary Information) and that caste-specific 
gene expression may seem insignificant just because differences in 
opposite directions across organs are averaged out25.

The objective of this study was to assess the origin of genes 
with caste-biased expression and identify the ancestral GRN in the 
brains of five ant species from different genera and three different 
subfamilies. We used re-annotated genomes to identify conserved 
genes, and developed a method to normalize for subfamily/genus-
specific effects and colony identity before evaluating caste-biased 
gene expression across ant species. This allowed us to identify a 
number of conserved pathways and candidate genes that have pre-
viously remained hidden. We validated our approach by examining 
gene expression in the brains of reproductive and sterile workers 
of two ants that secondarily lost the queen caste. This allowed us 
to test the expectation that their GRNs for reproductive division of 
labour should be less differentiated because fertile and sterile work-
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ers represent variation within a single caste phenotype, similar to 
fertile and sterile females of Polistes wasps that never evolved differ-
entiated castes with 100% predictable mating status. We also exam-
ined brain gene expression data of honeybee queens and workers 
to assess whether some of the same genes were involved in these 
two independent origins of superorganismality, and whether direc-
tionality of caste-biased expression for shared genes was correlated 
across ants and bees.

Results
Reconstructing the evolutionary origin of ant genes with 
caste-biased expression. We produced and re-analysed brain 
transcriptomes for five ant species with normal caste differentia-
tion—Acromyrmex echinatior, M. pharaonis, Linepithema humile, 
Solenopsis invicta and Lasius niger26—as well as the queenless ants 
Ooceraea biroi22 and Dinoponera quadriceps27, which are, respec-
tively, clonal with egg laying and sterile workers and sexual with sec-
ondarily evolved dominance hierarchies where one worker becomes 
inseminated to serve as the (gamergate) queen28 (Supplementary 
Table 1). We recovered all orthologous genes across 23 re-annotated 
insect genomes and traced the evolutionary history of genes for all 
five species with normal caste differentiation (see Methods) to assign 
gene origins in the neopteran phylogenetic tree and later gene emer-
gences in the ant tree. We then identified genes with caste-specific 
brain expression in each species and found that 42–62% of them had 
early neopteran origins and 8–25% were ant-lineage specific, either 
at the subfamily or genus level. These percentages were similar but 
somewhat lower than those for the whole genomic background, 
which gave 45% (40–51%) of genes with ancient homologues and 
26% (18–35%) without (Supplementary Table 2).

We then used log-likelihood ratios to evaluate differences 
between proportions of caste-biased gene origins at each node 
and proportions of extant genes with caste-biased brain expres-
sion, which allowed direct comparison between caste-biased genes 
of different evolutionary ages. Likelihood ratios of gyne-biased 
expression increased with evolutionary age in all five ants (all 
P <  1 ×  10−3; Fig. 1), implying that early neopteran genes are sig-
nificantly more likely to have gyne-biased expression than genes 
of more recent origin. However, likelihood ratios of worker-biased 
genes varied, having similar frequencies as gyne-biased genes in 
A. echinatior (gynes versus small workers), S. invicta and L. niger, 
but slightly or steeply decreasing frequencies with the age of gene 
origin in M. pharaonis and L. humile, respectively (Fig. 1). In the 
first three species, ancient genes had varying degrees of higher 
prevalence than lineage-specific genes (S. invicta: 10.9 versus 
2.6%; L. niger: 4.9 versus 1.9% (both P <  1 ×  10−3); A. echinatior: 
0.3 versus 0.1% (not significant, P =  0.29)). However, in L. humile 
and M. pharaonis, ancient genes were significantly less likely to 
have worker-biased expression than lineage-specific genes (L. 
humile: 10.4 versus 40.3%; M. pharaonis: 2.9 versus 3.7% (both 
P <  1 ×  10−3)) (Fig. 1 and Supplementary Table 3).

Relative effects of species and caste identity on gene expression 
in ant brains. We identified 6,672 orthologues that were shared 
across all 7 ant species. Overall expression similarity matrices for 
the five ants with typical gyne–worker caste differentiation showed 
that brain samples from the same ant species clustered together 
regardless of caste (Fig. 2a). Principal component analysis (PCA) 
of gene expression data clearly separated samples according to 
species identity, with the first two axes jointly explaining 37% of 
the total variance in gene expression (Fig. 2b). However, within 
each species, samples of the same caste clustered more closely 
than samples from the same colony (Fig. 2a), suggesting that brain 
gene expression patterns might predict gyne and worker pheno-
types, provided lineage-specific determinants of gene expression 
could be removed.

To separate the effects of genus or subfamily identity and caste 
on brain transcriptomes, we calculated species-specific z scores by 
subtracting the mean expression levels of each gene and normal-
izing also for variation in gene expression across samples. This 
produced a matrix of directly comparable residuals across species, 
which showed that the brains of same-caste individuals have simi-
lar patterns of gene expression (Supplementary Fig. 2a). The first 
two principal component axes explained 15% of the overall variance 
and completely separated all samples according to caste (Fig. 3a). 
Similar patterns were found when transcriptome data were prepro-
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Fig. 1 | Likelihood ratios of genes with caste-biased expression in 
the brains of five ant species originating at subsequent phylogenetic 
nodes. All log2 likelihood ratios are relative to the total number of genes 
with caste-biased expression in either direction, with positive and 
negative values indicating higher and lower likelihoods, and shaded 
areas representing 90% CIs based on binomial distributions. The ant 
subfamily tree on the left has been supplemented with key characteristics 
of typical social organization (monogynous =  single-queen colonies; 
polygynous =  multiple-queen colonies; monomorphic =  unimodal size 
distribution of workers; polymorphic =  skewed size distribution of workers 
(as in S. invicta) or bimodal distribution (as in A. echinatior)). For S. invicta, 
we pooled equal numbers of large and small workers, so gene expression 
refers to average expression levels among different worker sizes. For A. 
echinatior, we present likelihood ratios between gynes and minor workers 
here, and those between gynes and major workers in Supplementary Fig. 1. 
Estimated divergence dates are given along the tree, based on the earliest 
fossil records and estimated phylogenetic divergence of ant clades59,60.
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cessed with other methods, such as regularized log transformation 
or variance-stabilizing transformation (Supplementary Fig. 3)29. A 
coherent signature of caste-specific gene expression in ant brains 
thus appears to exist, even though we could not adjust for epistatic 
and environmental confounders that are likely to also be important. 
Normalizing for colony-level effects further improved the overall 
resolution for caste-specific gene expression, with the percentage of 
variation explained by the two principal component axes increasing 
to 24% (Fig. 3c and Supplementary Fig. 2b; see Methods).

We used two-way analysis of variance (ANOVA) to unravel 
the confounding effects of ant subfamily (Fig. 1) using the scores 
along the first two principal component axes describing transcrip-
tome variation after species-level normalization. This showed 
that caste remains the dominant predictor along both principal 
component axes, explaining 44.5 and 42.8% of the respective vari-
ances (P =  8 ×  10−9 and 6 ×  10−8, respectively; Fig. 3a). Subfamily 
did not appear to have a directly significant effect (explained vari-
ance =  1 ×  10−4 for principal component 1 and 1 ×  10−5 for principal 
component 2; both P =  0.99), which was expected because normal-
ization for species effects also normalized for subfamily effects, 
but 26.5 and 23.4% of the respective variances along the first and 
second principal component axes were explained by the interaction 
term between caste and subfamily identity (P =  8 ×  10−6 and 7 ×  10−5, 
respectively). Using colony-level normalization produced a similar 
result (Supplementary Table 4), suggesting that future comparisons 
across a phylogenetically more diverse set of ants may reveal clear 
subfamily effects on brain gene expression across castes in addition 
to the genus/species-level effects that we document.

Brain transcriptomes in ants that secondarily gained a worker 
caste or lost the queen caste. Additional worker and soldier castes 
have arisen in many ant lineages, normally with body sizes interme-
diate between queens and small workers30–32. Within the attine ants, 
which evolved 55–60 million years ago (Ma), only the evolution-

arily derived Atta and Acromyrmex leaf-cutting ants that originated 
around 15 Ma33 have such additional castes as secondary innova-
tions. We compared the brain transcriptome similarity (normalizing 
again for species identity) of large and small A. echinatior workers 
relative to workers of the other four species. This showed that large-
worker brain transcriptomes were distinct from those of gynes, but 
that their expression profiles were more distant from those of the 
monomorphic workers of the four other ant species (Supplementary 
Fig. 4), as expected when large workers are evolutionarily derived. 
Also, these resolutions further improved when we normalized for 
colony-level variation (Supplementary Fig. 4).

The queen caste has secondarily disappeared in several ant lin-
eages. This happened before workers had irreversibly lost the sperm 
storage organ (spermatheca), so mated workers could evolve to be 
ergonomically cheaper egg layers when colonies were small34,35. 
Rarely, ant lineages abandoned sexual reproduction altogether36,37 
to produce new workers from unfertilized worker eggs22,27. Using 
the published brain transcriptomes of reproductive and non-repro-
ductive workers (Supplementary Table 1), we found (after species-
level normalization) that clonal reproductive and non-reproductive 
O. biroi workers were separated by the first principal component 
axis and that separation once more improved after normalizing 
for colony identity. Brain gene expression differences were less 
pronounced in D. quadriceps where colony-level normalization 
was needed to make the two worker phenotypes segregate in most 
but not all colonies (Supplementary Fig. 5a). In both species, the 
expression patterns of fertile and sterile workers segregated along 
the same principal component axis, suggesting there may have 
been convergent evolutionary responses to losing the queen caste 
(Supplementary Fig. 5b).

We used singular-value decomposition to assess overall gene-
expression similarity between the two queenless and five other ants. 
We first validated this method for the normalized brain transcrip-
tome data of the five ants via leave-one-out jack-knife resampling, 

Species

a b

C
as

te

Species

A. echinatior

S. invicta

M. pharaonis

L. niger

L. humile

Caste

Gyne

Worker0.75

0.80

0.85

0.90

0.95

1.00

–100

–50

0

50

–50 0 50 100

PC1 (22%)

P
C

2 
(1

5%
)

Caste

Gyne

Worker

Species

A. echinatior

S. invicta

M. pharaonis

L. niger

L. humile

Fig. 2 | Gene expression signatures of species identity and caste type, calculated from 6,672 one-to-one orthologues across 7 ant species. a, Expression 
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which assigned four ants as training data and then tested the match 
between expected and observed caste-specific expression in the 
fifth species. This showed that segregated gene-expression profiles 
of queens and workers could be retrieved for all five combinations, 
and again more consistently after normalizing for colony-level vari-
ation (Supplementary Fig. 6). Projecting the queenless ant data onto 
the five normal ant species PCA matrix showed that brain transcrip-
tomes of their reproductive and non-reproductive workers fell in the 
centre of the plot and failed to segregate, both after normalizing for 
species- and colony-level differences (Fig. 3b,d). With the first two 
principal component axes probably representing the ancestral GRN 
for differential queen–worker gene expression, this result is consis-
tent with both queenless ants having lost the ancestral caste GRN 
(Supplementary Fig. 5), although the genes composing the GRN 
are still present. We further tested whether phenotypic plasticity for 
reproductive roles within a single female bauplan would generally 
fail to produce segregation along our principal component axes for 
genetically hard-wired castes by plotting brain gene-expression data 
for breeders and helpers of Polistes canadensis wasps27. This showed 
a similar lack of segregation, consistent with these wasps lacking 
permanent castes because they never passed the point of no return 
to superorganismality3 (Supplementary Fig. 7).

Key ancestral genes in the genetic regulatory network medi-
ating queen–worker caste differentiation in ants. To elucidate 
functional categories of gene-sets regulating gyne–worker caste 
differentiation, we identified pathways with consistent caste-
biased expression across the five ant species using enrichment 

analysis38. After further colony-level normalization, we found that 
metabolism-associated genes (for example, oxidative phosphory-
lation and carbon metabolism) were significantly upregulated 
in gynes across the five ant species. Also, the phototransduction 
pathway was upregulated in gynes except for L. niger where a 
same-direction difference was not significant. Such enrichments 
were not detected in the reproductive workers of both queenless 
ants, as expected when they lack specialized queen phenotypes 
that need vision during mating flights (Supplementary Table 5 and 
Supplementary Fig. 8).

Using a generalized linear model (GLM) to account for additive 
effects of caste and species identity on the expression of the 6,672 
orthologous genes, we identified 42 genes with significant differen-
tial expression between gynes and workers across all 5 ant species (38 
upregulated in gynes, 4 upregulated in workers; fold change >  1.5; 
false discovery rate (FDR) <  0.01). We interpreted these as poten-
tial key genes in the conserved ancestral GRN for queen–worker 
differentiation (Supplementary Table 6). Consistent with the gene-
set/pathway enrichment results, several of these genes are involved 
in vision, including neither inactivation nor afterpotential protein C 
(ninaC) and the protein bride of sevenless (boss). Also, genes asso-
ciated with hormonal and insulin systems, including neuroparsin-
A-like, vitellogenin-3-like, eclosion hormone, locusta insulin-related 
peptide (LIRP) and insulin-like growth factor-binding protein com-
plex acid labile subunit (IGFALS), were significantly upregulated in 
gynes across the five ant species (Fig. 4), whereas Ras-related and 
oestrogen-regulated growth inhibitor-like protein (RERGL) was sig-
nificantly upregulated in workers (Fig. 4).
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To tentatively explore the identity of the ancestral ant GRN 
components, we constructed a cross-species gene co-expression 
matrix (see Methods), which produced clusters of genes exhib-
iting conserved co-expression with the key genes of the con-
served ancestral GRN that were nested within these clusters 
(Supplementary Information). These networks seemed consistent 
with the extant ant GRN having maintained overall aspects of  
co-regulation, but this result will need validation and refine-
ment with species-specific transcriptome data for time series of  
developmental phenotypes.

Toolkit genes involved in convergent caste differentiation in ants 
and corbiculate bees. The corbiculate bees (honeybees, string-
less bees and bumblebees) and ants independently evolved the 
permanent castes39 that define superorganismality3. It has been 
hypothesized that there exists a toolkit of genes that are differen-
tially expressed in breeder and helper phenotypes across insect 
lineages9,40, but whether such genes play analogous roles in inde-
pendent transitions to superorganismality remains unknown. We 
therefore compared the underlying GRNs for caste differentiation 
between ants and honeybees using pupal honeybee brain transcrip-
tome data of orthologous genes41. Among the 42 conserved caste 
GRN genes in ants, 39 have orthologues in the honeybee and 15 
of these (38.5%) had significant differential expression between 
honeybee queens and workers (fold change >  1.5; P <  1 ×  10−3; 
Supplementary Information). This percentage is higher than the 
overall proportion of genes with any differential expression across 
honeybee gynes and workers (733/6,036 =  12.1%; P <  1 ×  10−4), con-
sistent with an ancestral hymenopteran toolkit of genes mediating 
reproductive division of labour9. However, only 5 of these 15 genes 
had the same direction of caste-biased expression between ants and 
honeybees (an uncharacterized protein LOC105150705, elongation 
of very long chain fatty acids protein AAEL008004-like, ninaC, neu-
roparsin-A-like and homeobox protein MSX-2; Supplementary Table 
6), a ratio not significantly different from the 12.1% overall propor-
tion (P =  0.58). This lack of directional consistency in caste-biased 
expression implies that the ancestral GRNs of ants and honeybees 
are uncorrelated despite including some of the same toolkit genes, 

as expected when irreversible transitions to superorganismality 
evolved convergently.

Independent recruitment of genes with caste-biased expression 
was confirmed when we considered all orthologous genes between 
ants and the honeybee. After normalization, ant gynes and workers 
segregated along the first principal component axis and honeybee 
gynes and workers segregated along the second principal compo-
nent axis (Supplementary Fig. 9a). When we projected the honey-
bee caste-specific brain transcriptomes on the first two principal 
component axes for ant transcriptomes, the second principal com-
ponent axis separated gyne and worker brain samples of the hon-
eybee, but with expression bias in the opposite direction compared 
with ants (Supplementary Fig. 9b).

Discussion
Our study reconstructs the contours of the ancestral brain GRN in 
queens and workers20,42 that established permanent reproductive 
division of labour in ants43,44. We found that later subfamily/genus 
effects blur this conserved ancestral GRN23, as expected after around 
120 Myr of adaptive radiation20,43. This finding underlines the neces-
sity of elaborate normalization procedures, which possibly explains 
why our study, based on a single-matrix approach across species, 
achieved higher resolution than Morandin et al.8 (Supplementary 
Information). Some ant GRN genes, such as vitellogenin-3-like and 
neuroparsin-A-like, are homologues of juvenile hormone genes40,45 
involved in the regulation of facultative and obligate reproductive 
division of labour across social Hymenoptera40,46,47. However, the 
myosin light chain gene, reported as differentially expressed between 
castes across 16 ant species8, was not part of our GRN. This gene was 
slightly overexpressed in gynes (rather than underexpressed, as in 
ref. 8) in four ant species (not in L. niger), suggesting it exemplifies 
the problematic resolution of whole-body transcriptomes, because 
it must have had opposite caste-biased expression in other body 
parts. This previous study8 used overlapping species comparisons to 
identify common genes with caste-biased expression, which implied 
that type 2 errors increased proportionally. Our GLM approach 
avoids this problem by integrating all cross-species expression levels 
into a single data matrix after multiple normalization procedures, so 
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gynes and workers (both coloured according to species identity). All expression differences between gynes and workers were significant (FDR <  0.01, two-
sided Wald tests).
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that sampling variance in the number of detected ancestral differen-
tially expressed genes becomes gradually less when more species are 
included in a comparative analysis (Supplementary Information). 
Three-quarters of the genes with caste-biased expression across the 
five ants that our study discovered have not been identified in this 
role before, corroborating the improved resolution that our meth-
odological approach offers for future comparative transcriptomics 
studies of social evolution questions.

Our results support the notion that permanent reproductive divi-
sion of labour between specialized queens and life-time unmated 
workers was a major evolutionary transition in the ancestral ants1,3, 
involving a single genetically hard-wired point of no return that 
established the brain GRN for caste. Our analyses beyond the five 
ants with normal caste differentiation are consistent with genetically 
hard-wired caste differentiation being fundamentally different from 
what phenotypic plasticity can achieve, both in ants that second-
arily lost the queen caste and in dominance hierarchies of coopera-
tively breeding Polistes paper wasps that never evolved permanent 
castes. As envisaged by Wheeler1, only superorganismality based on 
permanently differentiated castes invites analogies with metazoan 
multicellular development. One of these is serial homology, as we 
found for the brain GRNs of the two distinct worker castes of A. 
echinatior—a pattern functionally reminiscent of transcriptomes 
specifying the upper and lower first molars of mice that originated 
from a single tooth48. Our results also confirm that the point-of-
no-return transition to superorganismality in the corbiculate bee 
lineage (bumblebees, stingless bees and honeybees)39,49 was inde-
pendent from the ants. Our study predicts that brain GRNs for per-
manent castes between these three corbiculate bee lineages should 
be mutually correlated because they share a recent common ances-
tor, but uncorrelated with the queen and worker brain GRN in ves-
pine wasps, which evolved superorganismality independent of ants 
and bees. Larger-scale brain GRN studies across the superorganis-
mal lineages as defined by Wheeler1,3 will thus be illuminating to 
further explore lineage-specific elaborations of social organization, 
such as the tentative link that we report between the recruitment of 
novel genes for worker functions and obligate polygyny in ants (Fig. 
1 and Supplementary Information).

Independence of gene-expression directionality in ants and the 
honeybee does not preclude that orthologous genes are part of 
ancestral genetic toolkits across convergently evolved superorganis-
mal lineages9. The toolkit concept is about participation9,23, whereas 
the ancestral GRN concept is about correlated co-expression across 
castes. The existence of a toolkit is purely an empirical issue, but 
an ancestral GRN has predictive elements because co-expression 
should be similar across lineages derived from the same major tran-
sition to superorganismality, but not across independent, irrevers-
ible transitions of this kind3. Our findings were consistent with this 
expectation, but the details of this inference remain somewhat pro-
visional because transcriptomes were from adult brains in ants and 
from pupae in the honeybee. Although we partly validated these 
results by comparing pupal transcriptomes from the honeybee and 
fire ant (see Methods), direct comparisons with transcriptomes of 
virgin adult honeybee queens are needed. More comparative brain 
transcriptome studies of ancestral GRNs across the ant, bee and 
wasp lineages with permanently unmated workers will undoubtedly 
add to our understanding of the selection forces that convergently 
produced analogous forms of superorganismal social organization.

Methods
Sample collection. A. echinatior. Five colonies of A. echinatior were collected 
in Panama in 2004 (Ae263), 2014 (Ae704) and 2016 (Ae747, Ae764 and Ae767) 
and reared at the Centre for Social Evolution, University of Copenhagen under 
a constant temperature of around 25 °C and around 70% humidity. Gynes and 
minor workers were collected within the fungus garden, whereas major workers 
were collected while they were foraging outside, always during daytime (10:00 
to 16:00), and isolated in groups of 6–10 individuals of the same caste in small 

fluon-coated plastic boxes. Ants were then put on ice to reduce activity before 
their brains were dissected in a dissection dish with diethyl pyrocarbonate-treated 
phosphate-buffered saline on ice. Dissection was done under a stereomicroscope 
with sterile (heat-treated) forceps, and only samples consisting of the complete and 
undamaged anatomical structure of a brain were retained. Each brain dissection 
was completed within 5 min and dissected brains were transferred to 1 ml RNAlater 
(pooling a maximum of 12 brain samples of the same caste), kept at 4 °C overnight 
and then transferred to a − 20 °C freezer for long-term storage.

M. pharaonis. Five colonies of M. pharaonis (3rd Room X1/B, CS10, Donor 3rd, 
Donor BQ- and 3rd Room X1/A) were reared at the Centre for Social Evolution, 
University of Copenhagen under a constant temperature of 27 °C and 50% 
humidity from a stock collected in 200850. Gynes were separated from males at 
the pupal stage and reared with 10–15 workers in fluon-coated petri dishes to be 
collected within 3 d after they hatched as adults, whereas workers were collected 
directly from the source colonies when they were foraging. All collections were 
done during daytime (10:00 to 16:00) and adults were kept in groups of 6–10 of 
the same caste in small fluon-coated boxes. Dissection procedures were the same 
as in A. echinatior, except that dissected brains were transferred into RNAlater 
with a droplet of phosphate-buffered saline because the brains were too small to be 
handled directly with forceps. On storage, each 1 ml RNAlater sample contained 
at most 6 brain samples of the same caste to ensure the RNAlater concentration 
remained high enough.

L. humile. Five colonies of L. humile were collected in Caldes d’Estrac, Spain 
(Catalan3b) and Castell d’Aro, Spain (Main 3a, Main 4a, Main 5b and Main 5d) 
in 2016 and reared at the Centre for Social Evolution, University of Copenhagen 
under a constant temperature of 27 °C and 50% humidity. Gyne isolation, worker 
ant sample collection, brain dissection and storage proceeded in the same way as 
for M. pharaonis.

S. invicta. Four monogynous (single-queen) colonies were collected in Taoyuan, 
Taiwan—two in October 2012 and two in April 2014—and transferred to a fluon-
coated plastic box in the laboratory. Approximately 120 gynes and 200 workers 
from each colony were randomly selected for dissection. An equal number of 
small and large workers were selected. Ants were cooled on ice, then soaked into 
RNAlater and dissected with forceps in RNAlater on ice. Forceps were dipped into 
ethanol and flame-sterilized between samples. Each dissection was completed 
within 5 min, then transferred into tubes with 50 μ l TRIzol (maximum 12 brain 
samples of the same castes per tube) and stored at − 80 °C. All sampling and 
dissections were done within one month after collection in the field.

RNA extraction, complementary DNA (cDNA) library construction and RNA 
sequencing. A. echinatior, M. pharaonis and L. humile brain samples were retrieved 
from their RNAlater storage tubes, after which 10–12 brain samples for each 
caste and colony were pooled before RNA extraction. Total RNA was extracted 
using a Qiagen RNeasy Plus Micro Kit (catalogue number 74034) according to 
the manufacturer’s protocol (2013), and quality was evaluated with an Experion 
HighSens RNA analysis assay (Bio-Rad) before library preparation. Total amounts of 
RNA were quantified using an Invitrogen Qubit RNA High Sensitivity assay. Based 
on the RNA sample concentration, Ambion ERCC RNA Spike-In Mix (catalogue 
number 4456740) was added to each sample according to the manufacturer’s 
instructions. cDNA libraries were then constructed using a Clontech SMARTer PCR 
cDNA Synthesis Kit (catalogue number 634925), following the protocol described in 
the manufacturer’s user manual (protocol number PT4097-1). The numbers of PCR 
cycles for the second-strand cDNA synthesis reactions were optimized as described 
in the user manual. RNA sequencing was then conducted at BGI’s Sequencing 
Centre, Wuhan on an Illumina HiSeq 4000 platform with 150-base pair (bp) paired-
ends reads. We generated around 3–5 Gbp of RNA sequencing (RNA-Seq) data for 
each sample (Supplementary Table 1).

For S. invicta, brain samples (already in TRIzol) of the same caste and colony 
were first pooled and then homogenized with ceramic beads in a bead shaker 
(FastPrep-24; MP Biomedicals), after which chloroform was added to separate the 
liquid phase according to a standard TRIzol protocol. Afterwards, the aqueous 
phase containing the total RNA was directly applied to the GE Healthcare Illustra 
RNAspin Midi Kit for RNA purification according to the manufacturer’s protocol. 
RNA sequencing was conducted at the Academia Sinica High Throughput 
Genomics Core, Taipei, Taiwan. All samples were sequenced on an Illumina HiSeq 
2500 platform with 101-bp paired-ends reads. For one set of biological replicates, 
additional sequencing was obtained on an Illumina Genome Analyzer platform 
with 96-bp paired-end reads and an Illumina MiSeq platform with 250-bp paired-
end reads. This generated 4–10 Gbp of RNA-Seq data for each sample of S. invicta 
(Supplementary Table 1).

We further included published brain transcriptome data for L. niger26, O. biroi22 
and D. quadriceps27 in our comparative analyses, each with four to six colony 
replicates (see ‘Sample collection’ and Supplementary Table 1).

Quality checks of the RNA-Seq data. For the three sets of RNA samples with 
ERCC spike-in, the data quality was checked with mapped reads (log2 transformed 
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and with one pseudo read to avoid log2[0]), so we could remove outlier samples 
if their spike-in Pearson correlation coefficients across samples were <  0.95. 
Similarities in caste-biased gene expression were also used to check data quality. 
For each ant species, mapped transcriptome reads (log2 transformed as mentioned 
above) were compared among samples within the same caste of a focal species 
and checked for potential biological or technical biases when producing within-
caste Pearson correlation coefficients <  0.9, as suggested by the ENCODE RNA-
Seq guidelines51. These checks implied that we excluded seven outlier samples 
collected from deviating locations (assuming biological reasons for being outliers) 
or being prepared with somewhat deviating experimental procedures (assuming 
technical reasons for being outliers). If no associations with potential biological or 
technical biases could be identified from our notebooks, samples were retained for 
downstream analysis.

Improved genome annotation for all seven ant species based on RNA-Seq data. 
The genomes of the seven ant species included in this study (that is, A. echinatior, 
M. pharaonis, L. humile, S. invicta, L. niger, D. quadriceps and O. biroi) were re-
annotated based on the National Center for Biotechnology Information genome 
annotations of all of these seven species plus Drosophila melanogaster and Nasonia 
vitripennis. The re-annotations were done with GeMoMa52—a method based on 
the assumption that amino acid and intron positions are conserved across the 
insect phylogeny. This tool was chosen as particularly suitable for our project 
because the explicit use of exon–intron-structure information was shown to 
improve annotation accuracy52, and because integrating genome annotations across 
ant species increases the discovery rate of orthologous genes in each ant lineage. 
For each target ant species, the genome was first re-annotated by independent 
comparison with the genome annotations of the other ant species and the two non-
social insects. Then, RNA-Seq data for the target ant species were used to pursue 
re-annotation for each of the ant genomes. The re-annotated genomes of the 
target ant species were finally filtered for the combined analysis, using the genome 
annotation filter provided by GeMoMa to remove redundant or overlapping 
exons before they were used as reference genomes for RNA-Seq analysis. Overall, 
these re-annotations increased the total number of annotated genes across all ant 
genomes by 27% (from 90,856 to 115,739), which increased the accuracy of our 
orthology inferences.

Improved genome annotations for 16 other social and non-social insect species. 
To infer the origins of orthologous genes in the most accurate way possible, we 
also re-annotated the genomes of Harpegnathos saltator, Apis mellifera, Bombus 
terrestris, Habropoda laboriosa, Melipona quadrifasciata, Trichogramma pretiosum, 
Copidosoma floridanum, Ceratosolen solmsi, N. vitripennis, Orussus abietinus, 
D. melanogaster, Mochlonyx cinctipes, Tribolium castaneum, Pediculus humanus, 
Frankliniella occidentalis and Zootermopsis nevadensis (Supplementary Fig. 10). For 
each of these insect species, we used the six improved ant genomes as references 
(excluding L. niger because we added this species at a later stage of analysis), 
and re-annotated the insect genomes using GeMoMa as above, except for the 
integration of RNA-Seq data as they were only available for the seven ant species.

Finding gene-orthologues across the 23 insect genomes. Orthologous genes of 
the seven ant species were identified in four steps. For the orthologues among the 
16 re-annotated insect genomes other than the 7 focal ant species of our study 
we: (1) retained the longest protein sequence for each gene when we obtained 
more than one transcript; and (2) performed reciprocal best-hit BLASTP with 
an E value <  1 ×  10−5 and sequence coverage > 50%. For the 7 ants, we then: (3) 
used the homologues that both fell within the 95% confidence interval (CI) of 
being orthologues in reciprocal BLASTP searches, and confirmed assignments by 
additional synteny information because only orthologues should have remained 
co-linear with at least their immediately neighbouring genes; and (4) retained only 
genes with exactly one orthologue for each of the 7 ant species so that interspecific 
transcriptome comparisons were always based on one-to-one orthologue matches. 
Steps (2) and (3) were done using Proteinortho 5.16 with default settings53.

Determining the origins of orthologous genes. Using the package Proteinortho53, 
the origin of each gene was determined by integrating the orthologue information 
and phylogenetic relationships among species (Supplementary Fig. 10) using three 
criteria. First, if a reference gene had one or more orthologues in a branch with 
multiple species, we considered this to be sufficient evidence for the occurrence 
of a target gene’s orthologue in a branch. Second, the occurrence of a target gene’s 
orthologues along phylogenetic branches was conceptualized as a binomial process, 
and the probability of missing an orthologue (that is, the expected rate of loss of 
a gene) on a branch was set to be 10%. This threshold is somewhat arbitrary, but 
allowed missing orthologues (either due to gene loss or miss-annotation) in recent 
branches to have a somewhat higher probability while still considering orthologue 
losses to be independent among branches. This procedure thus controlled for 
the number of missing orthologues along branches (that is, for every candidate 
orthologue occurring in the earliest branch, we examined the inferred orthologue’s 
distribution along later branches and discarded a distribution as pseudo-
orthologous if the probability was < 0.01, after which we continued the same 
procedure for the next oldest branch). This refers to situations where orthologues 

occurred in an ancient phylogenetic node without finding corresponding 
orthologues in multiple recent lineages. Third, the origin of a focal gene was 
considered to be unambiguously identified with the oldest paired orthologue 
occurrence in the phylogenetic tree.

To illustrate the robustness of our approach, we present results for a 10% rate of 
gene loss in the main manuscript and provide complementary analyses for putative 
rates of 5 and 20% in Supplementary Fig. 11.

Likelihood estimation of the nodes where caste-biased gene expression evolved. 
The likelihood (LR) of caste-biased gene expression at each phylogenetic node (i) 
was calculated as the log ratio between the proportion of genes with specific caste-
biased expression in a focal evolutionary node (n) relative to the overall proportion 
of genes with the same type of caste-biased expression in the transcriptome (N),
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where ‘caste’ can either be gynes or (subcategories of) workers. The ratio of 
n(i)caste / n(i) and Ncaste / N also produced a CI of the likelihood ratio estimates when 
assuming that recruitment of genes for caste-biased expression follows a binomial 
distribution.

Transcriptome quantification. Transcriptome quantifications were done with 
the Salmon pipeline54. In brief, RNA-Seq data for the seven ant species were 
quasi-mapped to the corresponding transcriptome with improved annotation (as 
described above), after which bias-correction options were turned on to account 
for guanine–cytosine bias and sequence-specific bias. For the RNA-Seq data 
of A. echinatior, M. pharaonis and L. humile, where ERCC spike-in was added 
before cDNA library construction, additional quantifications were done with 
corresponding transcriptome +  ERCC pseudo-scaffolds.

Identification of genes that are differentially expressed among castes. For each 
ant species, genes with differential expression among castes were identified using 
the RNA-Seq data from the samples that had passed quality checking. Analyses were 
done with the DESeq2 package in R29 as follows: (1) we used transcript-level read 
counts from Salmon as input for DESeq2; (2) we aggregated the transcript-level 
read counts to become gene-level read counts using tximport; (3) we modelled the 
gene-level read counts as: count ~ caste +  colony, assuming that the influence of caste 
and colony on gene expression levels is additive (enabling us to include the possibly 
confounding effects of colony origin on caste-specific gene expression levels of 
colony members); and (4) we tested for gene expression differences between castes 
using DESeq2 and adjusted P values after independent hypothesis filtering, which 
controls for false discovery due to multiple testing while increasing the detection 
power55. Genes were identified as being differentially expressed between castes when 
the adjusted P value was <  0.05 based on a two-sided Wald test.

For the honeybee data in our subsequent comparison with ant data, we used 
recently published brain transcriptome data of the P4 stage of worker pupae and 
the P3 stage of gyne pupae, as these two stages represent the same developmental 
age41. We used the same procedure to detect differentially expressed genes between 
castes, as in our ant comparisons, except for using a more stringent fold-change 
expression difference between castes as a threshold for acceptance of differentially 
expressed genes (that is, we kept a 1.5-fold-change expression difference between 
castes as the null model and used a more stringent P value <  1 ×  10−3 instead of 
1 ×  10−2 used in our ant species comparisons). See Supplementary Information for a 
comparative evaluation of P value cut-offs.

While the choice of P value or fold-change cut-off will affect the number of 
genes identified as differentially expressed (detection power), other technical and 
experimental design differences will also affect the detection power, which makes 
it difficult to remain fully consistent when using data from multiple sources as we 
do in the present study. However, as our PCA and clustering analyses used whole 
transcriptomes (that is, the expression level of all genes in brains), we did not rely 
on specific P values or fold-change cut-offs for our overall comparisons of caste-
specific transcriptomes among ant and other social insect species. This implies 
that our main conclusions (of consistent directional gene expression differences 
in queens versus workers across ant species, and of genetic regulatory networks 
between ants and the honeybee being uncorrelated in their direction of expression 
bias) are independent of the choice of P value and fold-change cut-off.

We used pupal brain transcriptome data of honeybee queens and workers for 
comparison with ant transcriptomes because adult brain transcriptomes (RNA-Seq 
data) were not available. Using only adult caste data would have been preferable, 
but we partially validated our comparisons by repeating our analyses (data not 
included) using pupal brain transcriptome data of gynes and workers in S. invicta, 
which showed that they segregated for the same two principal component axes as 
the brain transcriptomes of adult gyne and worker castes in the five ant species. 
Also, direct pupal comparisons between S. invicta and the honeybee recovered the 
distinctly opposite patterns of directionality in gene expression that we report. We 
therefore assume that the conclusions of our comparisons of gene-expression bias 
in ants and the honeybee are reasonably robust, but we have added a caveat on this 
in the Discussion.
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Normalization of gene-expression scores across samples. To compare 
transcriptomes across samples, expression levels for genes with one-to-one 
orthologues in all seven ant species (n =  6,672) were normalized across samples. 
Normalizations were done as follows: (1) for each sample, transcripts per million 
kilobases for each gene were increased with 1 ×  10−5 pseudo-transcripts (to 
avoid log[0] scores) and then log2 transformed; and (2) the log2-transformed 
transcriptome data were then quantile normalized among samples (that is, by 
ranking the expression levels for all genes in each sample and then replacing gene-
specific expression levels with rank numbers across samples to equalize the average 
expression-level scores). This quantile normalization ensured that the overall 
distributions of gene expression levels remained the same across samples so that 
the effects of any technical artefacts were minimized56.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and 
Gene Ontology analyses. Gene Ontology and KEGG annotations for ant 
genomes were done by comparing homologous annotations between ants and D. 
melanogaster and integrating this information in three steps. First, genes in the 
ant genomes were compared by BLASTP with those in D. melanogaster. Second, 
gene-pair values with BLAST E values <  1 ×  10−5 and query coverage >  30% were 
retained. Third, ant genes were annotated with Entrez Gene ID from their fruit fly 
homologues and linked with Entrez Gene ID values from the Gene Ontology and 
KEGG annotations.

To find gene sets with the most consistent caste differences in gene expression 
across ant species, we examined brain gene expression differences between gyne 
and worker samples across colony replicates in the five ant species with typical 
caste differentiation: A. echinatior, S. invicta, M. pharaonis, L. niger and L. humile. 
We omitted O. biroi and D. quadriceps from this analysis because they lack the 
queen caste and have secondarily evolved egg laying by parthenogenetic or 
inseminated workers (gamergates), respectively. We used the quantile-normalized 
expression values of the 6,672 orthologous genes (see the section ‘Normalization 
of gene expression scores across samples’ above) as input for gene-set enrichment 
analyses using the General Application Gene-set Enrichment (GAGE) package 
in R38. Colony-specific gyne samples were always marked as ‘target’ and worker 
samples as ‘reference’, and we fixed the ‘compare’ option as paired when comparing 
differences in gene expression between gyne–worker pairs for colony replicates. 
Enrichment analyses were done using KEGG and Gene Ontology annotations from 
corresponding homologues in the fruit fly. We fixed the ‘same expression direction’ 
option as true in both KEGG and Gene Ontology enrichment analyses, which 
allowed us to detect gene sets that are consistently up- or downregulated in gynes 
relative to workers. Gene sets were identified as being significantly enriched when 
FDRs were <  1 ×  10−2 in two-sided non-parametric Kolmogorov–Smirnov tests.

Adjusting for species and colony identity to obtain a general assessment of 
caste-specific gene expression in ants. A transcriptome with a total number of 
n genes in any sample can be regarded as an n dimensional vector 

→
X , where 

→
X

=  (X1, X2, … , Xn) and Xi represents the expression level of gene i in a particular 
sample. This expression level Xi is then affected both by its species-specific 
background (for example, caused by species-specific developmental constraints, 
adaptations or environmental conditions) and its actual caste state, which should 
require the phenotypic expression of specific morphological and/or physiological 
traits. It is therefore useful to decompose vector 

→
X  as: 

→= →+ →+→
X G C S , where 

→
G  represents the influence of the lineage (species)-specific genetic background 
on gene expression, 

→
C  represents the influence of the actual caste state and 

→
S  

represents any other effects on gene expression that are sample specific, such as 
environmentally induced colony-level differences or any technical biases that 
might have affected single samples. To compare 

→
C  across multiple species, it is 

then essential to subtract 
→
G  and 

→
S  from 

→
X . Assuming that the effect of colony is 

small compared with the effect of caste, and because samples of the same species 
were always prepared with the same experimental procedures, 

→
S  can be assumed 

to be the same within species and thus to group together with 
→
G  in a new vector 

′
⎯→⎯
G . Thus, the task then becomes to obtain an estimate of ′

→
G  for each species 

that can be used to partial out any confounding effects on caste-biased gene 
expression. Because Ci, the influence of the caste phenotype on the expression 
of gene i in a particular sample, is either negative or positive and we expect a 
bimodal distribution of these values, we can assume that the distribution of Ci 
across samples of the same species is symmetrical around zero, also because we 
collected equal numbers of samples of different caste phenotypes. The sum of the 
Ci scores across multiple samples of the same ant species will then be 0 and the 
same applies to the sum of 

→
C . Then, the sum of 

→
X  across multiple samples of the 

same species can be expressed as: sum(
→
X) =  sum( ′

⎯→⎯
G ) +  sum(

→
C ) =  sum( ′

⎯→⎯
G ) +  0, so 

the average(
→
X) =  ′

⎯→⎯
G . This implies that 

→
C  =  

→
X  −  ′

⎯→⎯
G  =  

→
X  −  average(

→
X), so that it is 

legitimate to compare 
→
C  across different species.

Based on this principle, we subtracted the mean expression levels within 
species for each gene to obtain quantile-normalized orthologous transcriptome 
data controlled for species-level differences in the overall levels of gene expression. 
This was done with the SVA package in R57, using the Combat function by setting 

species identity as a batch covariate and setting the mean.only option as ‘false’ 
to also correct for differences in the total ranges of gene expression, which are 
affected by absolute expression-level difference across species. This normalization 
method thus removed all interspecies differences in gene expression profiles, so 
the mean and variance of expression levels for each gene became the same across 
species. The remaining residuals then reflected sample (colony-level) differences 
within species so that samples with similar residuals now represented similar caste-
biased gene-expression values across species.

One of the key assumptions in the procedure outlined above is that the effect 
of the colony of origin on brain gene expression is small compared with the effect 
of caste phenotype. However, because comparisons in the two queenless ants 
were among plastic phenotypes (egg laying or not) within a single morphological 
caste rather than between two permanently differentiated castes, the colony-level 
variation was expected to be relatively more important. Thus, in these species, 
we subtracted mean colony-expression levels while also adjusting for unequal 
variation in gene expression for each gene, to obtain quantile-normalized 
orthologous transcriptome data controlled for colony-level differences in overall 
gene expression. However, this made us realize that comparison with the five other 
ant species that had both caste phenotypes should ideally be based on samples that 
had undergone the same normalization procedures. We therefore always present 
results after species- and colony-level normalization side by side. The colony-level 
normalizations normally explained higher proportions of the variance, but this was 
due to each colony only having one sample for pooled gynes and one for pooled 
workers, whereas species-level normalizations had five colony-level replicates. The 
higher percentages of explained variance after colony-level normalization therefore 
appear to mostly reflect a reduction in the error term and should therefore carry 
similar but not quite identical weight as the species-level normalized results. This is 
because species-level normalization also removes any technical noise across pooled 
samples of ten individuals, due, for example, to RNA extraction, PCR cycles and 
sequencing methodology, but variation of this kind should have remained very 
minor.

Constructing similarity matrices across samples, castes and species. Sample 
similarity matrices were calculated using 1 −  rs (Spearman’s correlation coefficients) 
as a measure of the gene expression distance between samples after quantile 
normalization procedures. Overall caste-specific expression similarity matrices 
were thus constructed according to the principles outlined above, using all 
orthologous gene data and the hierarchical clustering (hclust) function in R.

ANOVA to examine variation along the first two principal component axes for 
caste-specific gene expression. We used PCA to evaluate the similarity of genome-
wide caste-specific gene expression patterns across the different ant species. 
Because each PCA axis obtained is a composite of many gene-level expression 
values, we examined the distribution of these scores using two-way ANOVAs with 
subfamily identity and caste state as main factors and their interaction term, giving 
the model:

ε
∼ +

+ × +
Principal component value subfamily identity caste state

subfamily identity caste state

This analysis allowed us to estimate the proportion of variance in principal 
component scores that could be explained by subfamily identity—a component 
that should be zero after adjusting for species-level differences. The other main 
factor, caste state (morphologically differentiated gynes or workers) was also 
categorical, and the statistical interaction between these two main effects can thus 
be understood as a subfamily-specific overall effect on observed patterns of caste-
biased gene expression.

Identifying caste-biased differentially expressed genes across the five ant 
species. Genes that are differentially expressed between gynes and workers across 
the five ant species were identified with a GLM in DESeq2 (ref. 29). RNA read 
counts for each sample were imported, after which we estimated the library size for 
each sample within the same ant species to adjust for library size differences, and 
subsequently modelled the expression levels of the 6,672 orthologous genes as:

~ +Read count species identity caste state

This assumes that the effect of species identity and caste state are additive, and 
will thus identify genes with consistent caste-biased expression across the five ant 
species with normal caste differentiation. We used a 1.5-fold-change difference in 
expression between castes as the null model, and genes were scored as significantly 
caste-biased if they passed an FDR of 0.01 (that is, 1.5 not overlapping with the 
99% CI) in two-sided Wald tests.

Constructing the cross-species co-expression network. A cross-species co-
expression network was constructed using all caste-specific transcriptomes for the 
6,672 orthologous genes, normalized for colony-level variation. The co-expression 
level for each gene pair was then calculated based on the absolute values of 
Spearman’s correlation coefficients among all samples for gynes and workers, and 
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the use of absolute values ensured that co-expression levels captured both positive 
and negative regulation.

Projection of caste-specific single-species transcriptomes on the principle 
component axes obtained for the five ant species with normal caste 
differentiation. After completing our analyses of caste-biased gene expression in 
the brains of the five ant species with normal queen–worker caste differentiation, 
we examined whether and to what extent the ant caste GRN might be shared with 
other social insect species by projecting brain published gene expression data of 
two queenless ants22,27, the honeybee41 and the paper wasp P. canadensis27 onto the 
PCA axes obtained for our five focal ant species.

To validate this method, we re-ran the PCAs for different combinations of 
four of the five ants to test whether the principal component axes produced would 
be consistent enough to also separate caste-biased gene expression in the fifth 
ant species. We did so by extracting the first two eigenvectors of the (quantile 
normalized and adjusted for species identity) transcriptomes of the four reference 
ant species using singular-value decomposition, which produced the first two 
principal components that separated castes across the four reference species. 
We then projected the normalized transcriptomes of the fifth ant species onto 
the PCA by matrix multiplication with the extracted eigenvectors from the four 
reference species. This procedure is comparable to using a leave-one-out jack-knife 
resampling approach58. Because it produced satisfactory results, we applied this 
procedure throughout comparisons between the five ant species with normal caste 
differentiation and the two queenless ants, the honeybee and the paper wasp P. 
canadensis.

Code availability. The Python and R scripts used to process the data are available 
at https://github.com/StanQiu/ant_brain_comparative.

Data availability
RNA-Seq data have been deposited under BioProject accession number 
PRJNA427677 (https://www.ncbi.nlm.nih.gov/sra/SRP127971).
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