Cyphomyrmex costatus
Cyphomyrmex costatus | |
---|---|
Scientific classification | |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Class: | Insecta |
Order: | Hymenoptera |
Family: | Formicidae |
Subfamily: | Myrmicinae |
Tribe: | Attini |
Genus: | Cyphomyrmex |
Species: | C. costatus |
Binomial name | |
Cyphomyrmex costatus Mann, 1922 | |
Synonyms | |
|
This species is one of the most well studied of the genus.
Photo Gallery
Identification
Mera-Rodriguez, et al. (2020) - Disc of first gastral tergum with strong longitudinal ridges on each side of midline; mid-pronotal tubercles absent; and posterodorsal margin of petiole neither drawn out nor bidentate (Kempf 1965).
Distribution
Mera-Rodriguez, et al. (2020) - Cyphomyrmex costatus is continuously distributed throughout Central and northern South America, from the states of Oaxaca and Veracruz in Mexico, to the states of Amazonas and Pará in Brazil (Harada and Ketelhut 2009; Bezděčková et al. 2015).
Latitudinal Distribution Pattern
Latitudinal Range: 19.598888° to -4.0912°.
North Temperate |
North Subtropical |
Tropical | South Subtropical |
South Temperate |
- Source: AntMaps
Distribution based on Regional Taxon Lists
Neotropical Region: Colombia, Costa Rica, Ecuador, Guatemala, Honduras (type locality), Mexico, Panama.
Distribution based on AntMaps
Distribution based on AntWeb specimens
Check data from AntWeb
Countries Occupied
Number of countries occupied by this species based on AntWiki Regional Taxon Lists. In general, fewer countries occupied indicates a narrower range, while more countries indicates a more widespread species. |
Estimated Abundance
Relative abundance based on number of AntMaps records per species (this species within the purple bar). Fewer records (to the left) indicates a less abundant/encountered species while more records (to the right) indicates more abundant/encountered species. |
Biology
|
From Kempf (1966):
The types of the species were found by Mann in rotten wood. No further detail is given.
The bulk of our information has been gathered by Weber, who, in successive studies (1941-57), was able to elucidate many aspects of its biology, so that in this regard Cyphomyrmex costatus is one of the best known species of the genus.
Weber's observations were made in Panama, principally on Barro Colorado Island. There, the ants are not uncommon, although seasonal scarcity, due to dry seasons and different stages of the wet season, has been observed. The nests are found in the soil, under stones or rotten wood. The cells, elliptical in shape, are of variable size, according to colony development. 8 x 5, 15 x 10, 32 x 13 and 30 x 20 mm with a maximum height of 10 mm are the dimensions obtained by actual measurements in the field.
The fungus garden is bluish gray in color, friable, and crumbles easily. In nature, the garden, though sessile, is in part supported by rootlets. The substrate, consisting of vegetable debris, is strengthened by quartz sand grains, parts of insect skeletons, notably of ants (Weber gives a list of parts from a variety of species), forming the frame work of the fungus-garden.
In artificial cultures, the ants accepted as substrate dried fecal pellets of caterpillars, rose stamens, and cassava granules dusted with yeast extract. The material collected in Panama, in June 1955, was taken to the U. S. by Prof. Weber, who studied the factors responsible for the production and maintenance of thriving cultures of fungi in ant gardens, despite continual possibilities for contamination. The most striking result of this important research consisted in the development, from artificial cultures, of the sporophore or fruiting stage of the fungus cultivated by costatus. This was identified by two specialists as a new species belonging to the agaric genus Lepiota.
Individual colonies, always monogynous, may contain from 20 up to nearly 100 workers. Individual behavior, like "jigging" and grooming was likewise observed (cf. Weber, 1957: 484).
Finally, the ant Megalomyrmex wheeleri was found living in symbiotic relationship with Cyphomyrmex costatus. The former, apparently feeding on the fungus, occurred in 4 nests of the latter. In two nests, there was only a queen of Megalomyrmex. in the remaining nests a queen with numerous workers of her own species. In all cases, the guests lived in a separate cell which, however, communicated with the cell containing the fungus garden, The host species did not disturb the guest. Due to adverse conditions, the study of this relationship could not be carried to completion.
Adams et al. (2015) found that workers of Cyphomyrmex costatus, the host of Megalomyrmex mondaboroides and Megalomyrmex silvestrii, react to a sting by Megalomyrmex parasites mainly with submissive behavior, playing dead or retreating. Host submission also followed brief antennal contact. The observed behavior of Cyphomyrmex costatus was similar to that of Cyphomyrmex cornutus, host of Megalomyrmex mondabora, suggesting that the alkaloidal venoms with pyrrolidines from M. mondabora, piperidines from M. mondaboroides, and pyrolizidines from M. silvestrii may function similarly as appeasement and repellent allomones against host ants, despite their different chemical structure. With the use of these chemical weapons, Megalomyrmex thief ants are met with little host resistance and easily exploit host colony resources.
Jigging
"Jigging", a conspicuous, rhythmic rocking behavior, has been observed in this species. This behavior occurs in nests but the cause and function remains unclear. Kweskin (2004) found jigging increased in the presence of Collembola, suggesting the behaviour may be in response to invaders of the ants' fungus gardens.
Association with Other Organisms
- Explore: Show all Associate data or Search these data. See also a list of all data tables or learn how data is managed.
- This species is a host for the ant Megalomyrmex mondaboroides (a xenobiont) in Panama (Adams et al., 2015).
- This species is a host for the ant Megalomyrmex silvestrii (a xenobiont) in Panama (Adams et al., 2015).
Flight Period
X | X | X | X | X | |||||||
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
Source: Kaspari et al., 2001.
- Check details at Worldwide Ant Nuptial Flights Data, AntNupTracker and AntKeeping.
- Explore: Show all Flight Month data or Search these data. See also a list of all data tables or learn how data is managed.
Castes
Nomenclature
The following information is derived from Barry Bolton's Online Catalogue of the Ants of the World.
- costatus. Cyphomyrmex costatus Mann, 1922: 44 (w.) HONDURAS.
- Type-material: 3 syntype workers.
- Type-locality: Honduras: Lombardia, ii.-iii.1920 (W.M. Mann).
- Type-depository: USNM.
- Kempf, 1966: 175 (q.).
- Status as species: Weber, 1940a: 408 (in key); Weber, 1941b: 104; Kempf, 1966: 172 (redescription); Kempf, 1972a: 92; Snelling, R.R. & Longino, 1992: 480 (in key); Bolton, 1995b: 167; Branstetter & Sáenz, 2012: 258; Bezděčková, et al. 2015: 117; Fernández & Serna, 2019: 850.
- Senior synonym of colombianus: Kempf, 1966: 172; Kempf, 1972a: 92; Bolton, 1995b: 167.
- Distribution: Brazil, Colombia, Guatemala, Honduras, Mexico, Panama, Peru.
- colombianus. Cyphomyrmex colombianus Weber, 1940a: 408 (diagnosis in key), 413 (w.q.) COLOMBIA.
- Type-material: 1 syntype worker, 3 syntype queens.
- Type-locality: Colombia: Cordillera Central, Rio Porce, El Homiguero Mine, 3000-3200 ft, 17.vii.1938, 18.vii.1938, and 1.viii.1938 (N.A. Weber).
- Type-depository: MCZC.
- Status as species: Weber, 1966: 167.
- Junior synonym of costatus: Kempf, 1966: 172; Kempf, 1972a: 92; Bolton, 1995b: 167.
Type Material
Kempf (1966) - 3 workers collected by W. M. Mann in rotten wood, presumably deposited in the U. S. National Museum; not seen. Holotype worker (unique) of Cyphomyrmex colombianus in the N. A. Weber collection; not seen. One of the three isolated females of colombianus, not described but mentioned by Weber (1940: 414), taken at the same locality as holotype, was examined (NAW).
Description
Kempf (1966) - This is the smallest species of the genus, easily recognized, being the only form in the rimosus-group having four longitudinal carinae on tergum I of gaster. The closest relative is Cyphomyrmex wheeleri.
Worker
Kempf (1966) - Total length 2.1-2.4 mm; head length 0.56-0.61 mm; head width 0.51-0.56 mm; thorax length 0.67-0.75 mm; hind femur length 0.48-0.56 mm. Light brown; dorsum of head and gaster fuscous reddish brown. Integument densely granulose, opaque, with larger, shallow, scattered pits, visible on head and gaster. Antennal scrobe superficially reticulate-punctate and somewhat shining.
Head (fig 10, 19). Anterior apron of clypeus flattened, gently convex, mesially notched, laterally acutely dentate. Frontal lobes semicircular, greatly expanded, covering cheeks in full-face view. Frontal carinae moderately diverging caudad. Occipital corners lobate, not foliaceous, somewhat projecting. Vertex with a pair of carinae that diverge cephalad. Preocular carina fading out above eyes. Postero-inferior border of antennal scrobe bluntly marginate between upper orbit of eye and occipital lobe. Lower border of cheeks bluntly marginate. Eyes with 5-6 facets across greatest diameter. Supraocular tumulus either vestigial or distinct. Scape greatly attenuated at base, strongly incrassate apicad, not projecting beyond scrobe when in repose. Funicular segments II-VIII rather broader than long, IX about as long as broad.
Thorax (fig 19). Pronotum lacking mesial tubercles on disc, a small tubercle postero-laterally on each side, just behind the vestigially marginate lateral border of disc; antero-inferior corner of pronotum rectangular. Mesonotum dorsally with a shallow longitudinal impression, flanked on each side by a prominent, bluntly edged carina, which is slightly sigmoidal in dorsal view. In side-view, the carina is feebly impressed just behind the half. Mesoepinotal groove broadly and rather deeply impressed. Basal face of epinotum with a similar longitudinal impression, flanked on each side by a blunt ridge, which slightly diverges caudad; its posterior corner forming a rectangular tooth in side-view. Declivous face laterally unarmed. Epinotal spiracle situated on a vestigial oblique carina. Femora, especially hind femora, postero-ventrally crested, bearing at basal third a broader foliaceous lobe. Tibiae subprismatic.
Pedicel (fig 19, 38). Petiolar node trapezoidal in dorsal view, broadest in front with rounded corners, its dorsum flattened, with a short, prominent median laminule on posterior border. Postpetiole also slightly broader than long, with a distinct anterior face at right angle to dorsal face, having a median oval depression flanked by blunt, divergent ridges, bearing a vestigial tumulus on anterior, a more distinct and flat one, on posterior end. Tergum I of gaster with four longitudinal, coarse and blunt carinae; both lateral and median carinae becoming obsolete somewhat in front of posterior border.
Pilosity scarce, consisting of minute, decumbent, silvery hairs on body and appendages.
Queen
Kempf (1966) - Total length 2.8-3.0 mm; head length 0.64-0.72 mm; head width 0.59-0.64 mm; thorax length 0.83-0.88 mm; hind femur length 0.62-0.64 mm. Quite similar to the worker, with the following differences of the caste: Compound eyes with about 10 facets across greatest diameter. Ocelli small, anterior ocellus between anterior end of carinae on vertex, lateral ones on the outer face of the same carinae. Lateral pronotal tubercles well developed. Mesothoracic scutum with a pair of short antero-mesial ridges, starting at anterior border and fading out at the half of the length of scutum. Postero-laterally, a pair of ridges that start at the transcutal suture going forewards to the antero-lateral border, lateral border slightly upturned. Scutellum not separated by sutures from the tubercular and slightly prominent paraptera; posteriorly, the scutellum is bilobate. Epinotal spines prominent, in side-view as long as deep at base, compressed, bluntly tipped. Postpetiole more transverse than in worker. Wings somewhat infuscated, with the usual venation.
Karyotype
- See additional details at the Ant Chromosome Database.
- Explore: Show all Karyotype data or Search these data. See also a list of all data tables or learn how data is managed.
- 2n = 20, karyotype = 20M (Panama) (Murakami et al., 1998).
References
- Adams, R.M.M., Jones, T.H., Longino, J.T., Weatherford, R.G., Mueller, U.G. 2015. Alkaloid venom weaponry of three Megalomyrmex thief ants and the behavioral response of Cyphomyrmex costatus host ants. Journal of Chemical Ecology 41: 373–385 (doi:10.1007/s10886-015-0565-y).
- Albuquerque, E., Prado, L., Andrade-Silva, J., Siqueira, E., Sampaio, K., Alves, D., Brandão, C., Andrade, P., Feitosa, R., Koch, E., Delabie, J., Fernandes, I., Baccaro, F., Souza, J., Almeida, R., Silva, R. 2021. Ants of the State of Pará, Brazil: a historical and comprehensive dataset of a key biodiversity hotspot in the Amazon Basin. Zootaxa 5001, 1–83 (doi:10.11646/zootaxa.5001.1.1).
- Brown, M.J.F., Bonhoeffer, S. 2003. On the evolution of claustral colony founding in ants. Evolutionary Ecology Research 5: 305–313.
- Cantone S. 2017. Winged Ants, The Male, Dichotomous key to genera of winged male ants in the World, Behavioral ecology of mating flight (self-published).
- Cardoso, D. C., Cristiano, M. P. 2021. Karyotype diversity, mode, and tempo of the chromosomal evolution of Attina (Formicidae: Myrmicinae: Attini): Is there an upper limit to chromosome number? Insects 1212, 1084 (doi:10.3390/insects12121084).
- Cushing, P.E. 2012. Spider-ant associations: An updated review of myrmecomorphy, myrmecophily, and myrmecophagy in spiders. Psyche: A Journal of Entomology 2012, 1–23 (doi:10.1155/2012/151989).
- Franco, W., Ladino, N., Delabie, J.H.C., Dejean, A., Orivel, J., Fichaux, M., Groc, S., Leponce, M., Feitosa, R.M. 2019. First checklist of the ants (Hymenoptera: Formicidae) of French Guiana. Zootaxa 4674, 509–543 (doi:10.11646/zootaxa.4674.5.2).
- Hamilton, N., Jones, T.H., Shik, J.Z., Wall, B., Schultz, T.R., Blair, H.A., Adams, R.M.M. 2018. Context is everything: mapping Cyphomyrmex-derived compounds to the fungus-growing ant phylogeny. Chemoecology 28, 137–144. (doi:10.1007/S00049-018-0265-5).
- Hanisch, P.E., Sosa-Calvo, J., Schultz, T.R. 2022. The last piece of the puzzle? Phylogenetic position and natural history of the monotypic fungus-farming ant genus Paramycetophylax (Formicidae: Attini). Insect Systematics and Diversity 6 (1): 11:1-17 (doi:10.1093/isd/ixab029).
- Kaspari, M., Pickering, J., Longino, J., Windsor, D. 2001. The phenology of a Neotropical ant assemblage: evidence for continuous and overlapping reproduction. Behavioral Ecology and Sociobiology 50, 382–390 (doi:10.1007/s002650100378).
- Kempf, W. W. 1966 [1965]. A revision of the Neotropical fungus-growing ants of the genus Cyphomyrmex Mayr. Part II: Group of rimosus (Spinola) (Hym., Formicidae). Stud. Entomol. 8: 161-200 (page 172, Senior synonym of colombianus)
- Kempf, W. W. 1966 [1965]. A revision of the Neotropical fungus-growing ants of the genus Cyphomyrmex Mayr. Part II: Group of rimosus (Spinola) (Hym., Formicidae). Stud. Entomol. 8: 161-200 (page 175, queen described)
- Kweskin, M.P. 2004. Jigging in the fungus-growing ant Cyphomyrmex costatus: a response to collembolan garden invaders? Insectes Sociaux 51, 158-162.
- Lau, M.K., Ellison, A.M., Nguyen, A., Penick, C., DeMarco, B., Gotelli, N.J., Sanders, N.J., Dunn, R.R., Helms Cahan, S. 2019. Draft Aphaenogaster genomes expand our view of ant genome size variation across climate gradients. PeerJ 7, e6447 (doi:10.7717/PEERJ.6447).
- Liberti, J., Sapountzis, P., Hansen, L.H., Sørensen, S.J., Adams, R.M.M., Boomsma, J.J. 2015. Bacterial symbiont sharing in Megalomyrmex social parasites and their fungus-growing ant hosts. Molecular Ecology 24, 3151–3169 (doi:10.1111/MEC.13216).
- Mann, W. M. 1922. Ants from Honduras and Guatemala. Proc. U. S. Natl. Mus. 61: 1-54 (page 44, worker described)
- Mera-Rodríguez, D., Serna, F., Sosa-Calvo, J., Lattke, J., Rabeling, C. 2020. A checklist of the non-leaf-cutting fungus-growing ants (Hymenoptera, Formicidae) from Colombia, with new biogeographic records. Check List 16, 1205–1227 (doi:10.15560/16.5.1205).
- Mueller, U.G., Poulin, J., Adams, R.M.M. 2004. Symbiont choice in a fungus-growing and (Attine, Formicidae). Behavioral Ecology 15(2): 357–364 (doi:10.1093/beheco/arh020).
- Murakami, T.; Fujiwara, A.; Yoshida, M. C. 1999. Cytogenetics of ten ant species of the tribe Attini (Hymenoptera, Formicidae) in Barro Colorado Island, Panama. Chromosome Science 2(3): 135-139 (page 135-139, Karyotype described)
- Weber, N. A. 1940. The biology of the fungus-growing ants. Part VI. Key to Cyphomyrmex, new Attini and a new guest ant. Rev. Entomol. (Rio de Janeiro). 11:406-427.
- Weber, N. A. 1957. Fungus-growing ants and their fungi: Cyphomyrmex costatus. Ecology. 38:480-494.
References based on Global Ant Biodiversity Informatics
- Achury R., and A.V. Suarez. 2017. Richness and composition of ground-dwelling ants in tropical rainforest and surrounding landscapes in the Colombian Inter-Andean valley. Neotropical Entomology https://doi.org/10.1007/s13744-017-0565-4
- Advani, N.K. and U.G. Mueller. 2006. A preference assay for quantifying symbiont choice in fungus-growing ants (Attini, Formicidae). Insectes Sociaux 53:446-455
- Dattilo W. et al. 2019. MEXICO ANTS: incidence and abundance along the Nearctic-Neotropical interface. Ecology https://doi.org/10.1002/ecy.2944
- Donoso D. A. 2014. Assembly mechanisms shaping tropical litter ant communities. Ecography 37 doi: 10.1111/j.1600-0587.2013.00253.x
- Fernandes, P.R. XXXX. Los hormigas del suelo en Mexico: Diversidad, distribucion e importancia (Hymenoptera: Formicidae).
- Fernández, F. and S. Sendoya. 2004. Lista de las hormigas neotropicales. Biota Colombiana Volume 5, Number 1.
- Franco W., N. Ladino, J. H. C. Delabie, A. Dejean, J. Orivel, M. Fichaux, S. Groc, M. Leponce, and R. M. Feitosa. 2019. First checklist of the ants (Hymenoptera: Formicidae) of French Guiana. Zootaxa 4674(5): 509-543.
- INBio Collection (via Gbif)
- Kaspari M. 1996. Litter ant patchiness at the 1-m 2 scale: disturbance dynamics in three Neotropical forests. Oecologia 107: 265-273.
- Kempf W. W. 1966. A revision of the Neotropical fungus-growing ants of the genus Cyphomyrmex Mayr. Part II: Group of rimosus (Spinola) (Hym., Formicidae). Studia Entomologica 8: 161-200.
- Kempf, W.W. 1972. Catalago abreviado das formigas da regiao Neotropical (Hym. Formicidae) Studia Entomologica 15(1-4).
- Kweskin, M.P. 2004. Jigging in the fungus-growing antCyphomyrmex costatus: a response to collembolan garden invaders? Insectes Sociaux 51(2):158-162.
- Longino J. T. 2013. Ants of Nicargua. Consulted on 18 Jan 2013. https://sites.google.com/site/longinollama/reports/ants-of-nicaragua
- Longino J. T. L., and M. G. Branstetter. 2018. The truncated bell: an enigmatic but pervasive elevational diversity pattern in Middle American ants. Ecography 41: 1-12.
- Longino J. et al. ADMAC project. Accessed on March 24th 2017 at https://sites.google.com/site/admacsite/
- Longino, J.T. 2010. Personal Communication. Longino Collection Database
- Maes, J.-M. and W.P. MacKay. 1993. Catalogo de las hormigas (Hymenoptera: Formicidae) de Nicaragua. Revista Nicaraguense de Entomologia 23.
- Mayhe-Nunes A. J., and K. Jaffe. 1998. On the biogeography of attini (Hymenoptera: Formicidae). Ecotropicos 11(1): 45-54.
- Ryder Wilkie K.T., A. L. Mertl, and J. F. A. Traniello. 2010. Species Diversity and Distribution Patterns of the Ants of Amazonian Ecuador. PLoS ONE 5(10): e13146.doi:10.1371/journal.pone.0013146
- Solomon S. E., C. Rabeling, J. Sosa-Calvo, C. Lopes, A. Rodrigues, H. L. Vasconcelos, M. Bacci, U. G. Mueller, and T. R. Schultz. 2019. The molecular phylogenetics of Trachymyrmex Forel ants and their fungal cultivars provide insights into the origin and coevolutionary history of ‘higher-attine’ ant agriculture. Systematic Entomology 44: 939–956.
- Vasconcelos, H.L., J.M.S. Vilhena, W.E. Magnusson and A.L.K.M. Albernaz. 2006. Long-term effects of forest fragmentation on Amazonian ant communities. Journal of Biogeography 33:1348-1356
- Vásquez-Bolaños M. 2011. Lista de especies de hormigas (Hymenoptera: Formicidae) para México. Dugesiana 18: 95-133
- Weber N. A. 1940. The biology of the fungus-growing ants. Part VI. Key to Cyphomyrmex, new Attini and a new guest ant. Rev. Entomol. (Rio J.) 11: 406-427.
- Weber N. A. 1941. The biology of the fungus-growing ants. Part VII. The Barro Colorado Island, Canal Zone, species. Rev. Entomol. (Rio J.) 12: 93-130.
- Pages using DynamicPageList3 parser function
- Photo Gallery
- Need species key
- Tropical
- Ant Associate
- Host of Megalomyrmex mondaboroides
- Host of Megalomyrmex silvestrii
- FlightMonth
- Karyotype
- Species
- Extant species
- Formicidae
- Myrmicinae
- Attini
- Cyphomyrmex
- Cyphomyrmex costatus
- Myrmicinae species
- Attini species
- Cyphomyrmex species
- Ssr