Acoustic communication within ant societies and its mimicry by mutualistic and socially parasitic myrmecophiles

K. Schönrogge a,*, F. Barbero b, L. P. Casacci b, J. Settele c, d, J. A. Thomas e

a Centre for Ecology & Hydrology, MacLean Building, Wallingford, U.K.
b Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
c UFZ, Helmholtz Centre for Environmental Research, Department of Community Ecology, Halle, Germany
d iDiv, German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig, Germany
e Department of Zoology, University of Oxford, Oxford, U.K.

A R T I C L E I N F O

Article history:
Received 29 January 2016
Initial acceptance 21 April 2016
Final acceptance 15 September 2016
Available online xxx
MS. number: 16-00080R

Keywords:
acoustic communication
ants
mutualists
social parasites
social structure

This review focuses on the main acoustic adaptations that have evolved to enhance social communication in ants. We also describe how other invertebrates mimic these acoustic signals in order to coexist with ants in the case of mutualistic myrmecophiles, or, in the case of social parasites, corrupt them in order to infiltrate ant societies and exploit their resources. New data suggest that the strength of each ant–myrmecophile interaction leads to distinctive sound profiles and may be a better predictor of the similarity of sound between different myrmecophilous species than their phylogenetic distance. Finally, we discuss the evolutionary significance of vibrations produced by specialized myrmecophiles in the context of ant multimodal communication involving the use of chemical and acoustic signals in combination and identify future challenges for research including how new technology might allow a better understanding of the study systems.

Efficient communication to coordinate the actions of up to a million specialized nestmates is fundamental to the success of social insects, especially ants. Various modes of signalling have been identified, including the release of semiochemicals, visual behavioural displays involving movement or posture, tactile interactions, and the comparatively poorly studied use of acoustic signals (Hölldobler & Wilson, 1990, 2009). As hotspots of resources in their environment, ants fiercely defend their colonies using a wide range of weapons (e.g. gland secretions, mandibles, sting), which are deployed in the manner of coordinated attacks by legions of intercommunicating workers. Nevertheless, ant nests are also magnets for other organisms that have evolved means to overcome the hostility of the host ants. Thus, an estimated ca. 10,000 invertebrate species live as obligate social parasites of ants, able to penetrate and exploit the resources within host colonies in order to complete their life cycle (Thomas, Schönrogge, & Elmes, 2005). The large majority of these adaptations evolved in many separate lines, especially among Coleoptera, Diptera, Lepidoptera and other Hymenoptera, from a 10 times greater number of commensals or mutualists (Fiedler, 1998; Hölldobler & Wilson, 1990; Nash & Boomsma, 2008; Pierce et al., 2002; Thomas, Schönrogge et al., 2005). All these myrmecophiles show morphological, behavioural, chemical or acoustic adaptations to interact with ants (Cottrell, 1984; Donisthorpe, 1927; Hinton, 1951; Lenoir, D’Ettorre, Errard, & Hefetz, 2001; Malicky, 1969; Wasmann, 1913; Wheeler, 1910; Witek, Barbero, & Marko, 2014). Armour, stealth and the secretion of attractive food rewards are frequently sufficient for unspecific or facultative myrmecophiles to access the enemy-free spaces of ants. However, the subversion of the ants’ chemical and/or acoustic signalling is generally required to enable true social parasites (sensu Nash & Boomsma, 2008) to live for long periods as undetected intruders in close contact with their hosts.

A key element of successful cohabitation in ant nests is to circumvent the host’s ability to differentiate between nestmates and intruders. Nestmate recognition is a dynamic process, primarily based on the detection of distinctive species- or colony-specific cocktails of cuticular hydrocarbons (CHC) covering the surface of all individuals (Hölldobler & Wilson, 1990; Howard, 1993; vander Meer & Morel, 1998; Winston, 1992). Social interactions such as allogrooming ensure an exchange between the CHC mixtures among nestmates and give rise to a shared CHC gestalt odour (vander Meer & Morel, 1998). The role that chemical
communication and nestmate recognition have in maintaining the cohesion of ant societies and those of other social insects has been subject to extensive study, with excellent recent reviews, for example by Martin and Drijfhout (2009) and van Wilgenburg, Symonds, and Elgar (2011): The deployment of chemical communication by obligate social parasites to subvert host recognition systems is equally well reviewed (e.g. Lenoir et al., 2001; von Thienen, Metzler, Choe, & Witte, 2014).

In contrast, the function, origin and role of acoustic signals in ants and their corruption by social parasites are much less well studied. In this review, we therefore focus on the state of the art concerning acoustic signalling in ants, and then consider the acoustic signalling of obligate and facultative myrmecophiles. In both cases we emphasize the insights that have resulted from recent technological advances that allow unalarmed ants and their guests to be recorded and to receive broadcasts of their acoustic signals under seminatural conditions (Barbero, Thomas, Bonelli, Balletto, & Schönrogg, 2009; Riva, Barbero, Bonelli, Balletto, & Casacci, 2016).

We first examine ant sound-producing organs and convergent adaptations that allow organisms other than ants to mimic and subvert ant–ant communications, focusing on advances in known and since then reviewed by Hölldobler and Wilson (1990); Fiedler (1998), Pierce et al. (2002), Thomas, Schönrogg et al. (2005) and Nash and Boomsma (2008), or covered cursorily by Witek et al. (2014). We then review recent insights into the ant acoustic signals themselves and their corruption by social parasites. This includes both the morphological adaptations to produce acoustic signals, the behavioural responses to them, and thus the impact on ant–social parasite/guest interactions. Much of this builds on the pioneering work of Markl (1965, 1967), Devries (1991a, 1991b), Hölldobler, Braun, Gronenberg, Kirchner, and Peeters (1994) and Kirchner (1997). Finally, we present new data relating the intimacy of interactions of lycaenid butterfly larvae to phylogeny and the similarity of acoustic signalling.

ACOUSTIC SIGNALLING IN ANTS

The use of acoustics, whether through receiving pressure waves through the air (i.e. sounds stricto sensu) or substrate vibrations, is a common means of communication in insects, whose functions include defence, displays of aggression, territorial signalling and mate attraction (Bennet-Clark, 1998; Gerhardt & Huber, 2002). Its advantage as a signal over chemical volatiles lies in instantaneous advantage as a signal over chemical volatiles. However, whereas substrate-borne vibrations would at least travel short distances. However, this is not supported by Golden and Hill (2016), who showed that stridulation organs have evolved independently multiple times in ants. In addition, whereas Markl (1973) suggested that they would probably become vestigial over time in arboreal ant species, owing to the rarity of burial by soil, there was instead a strong positive association between the presence of functional stridulation organs and the possession of an arboreal lifestyle (Golden & Hill, 2016).

Nestmate recruitment is the most frequently reported function for ant–ant acoustic signalling. For example, outside the nest, Atta cephalotes uses vibratory signals to attract foraging workers towards newly found food sources (Roces & Hölldobler, 1995). The same authors also observed that in the presence of parasitic phorid flies, foragers used acoustics to recruit minor workers for defence, thus also employing vibrations as alarm signals (Roces & Hölldobler, 1995, 1996). Finally, although created by a scraper and file organ located on the first gastric tergite and the post-petiole, Tautz, Roces, and Hölldobler (1995) observed that vibrations travelled the length of the body to the mandibles, aiding the cutting of soft young leaf tissue by stiffening it. Behavioural experiments, however, suggest that this is a secondary effect and that communication is the main function for these vibrations (Roces & Hölldobler, 1996).

It has recently become clear that acoustic signals are also used to transmit more abstract information, including a species’ identity and an individual’s caste and status (Barbero, Thomas et al., 2009; Casacci et al., 2013; Ferreira, Cros, Fresneau, & Rybak, 2014). For example, modern molecular analyses revealed the Neotropical ponerine ant species Pachycondyla apicalis to be a species complex of five cryptic lineages. The stridulations of three largely sympatric lineages are also distinctive, suggesting that morphological characters on the pars stridens differ in length, width and ridge gap in each lineage (Ferreira et al., 2014; Wild, 2005). By contrast, two allopatric lineages had very similar acoustics, suggesting disruptive selection on this trait where sympatric overlap is high.

Acoustic patterns also signal caste and hierarchical status in at least two genera of Myrmicinae ants: Myrmica (Barbero, Thomas et al., 2009) and Pheidole (Di Giulio et al., 2015). In both taxa, the queens produce distinctive stridulations which, when played back to kin workers, elicit additional ‘royal’ protective behaviours compared with responses to worker signals (Barbero, Bonelli, Thomas, Balletto, & Schönrogg, 2009; Barbero & Casacci, 2015; Barbero, Thomas et al., 2009; Casacci et al., 2013; Ferreira, Poteaux, Delabie, Fresneau, & Rybak, 2010). In addition, in Pheidole pallidula the soldier and minor worker castes also make distinctive vibroacoustic signals (Di Giulio et al., 2015). Unlike Pachycondyla species, little interspecific variation was detected in either the queen or worker sounds made by closely related species.
sympatric species of *Myrmica* (Barbero et al., 2012; Barbero, Thomas et al., 2009; Thomas, Schönrogge, Bonelli, Barbero, & Balletto, 2010), which are instead clearly demarcated by unique hydrocarbon profiles (Elmes, Akino, Thomas, Clarke, & Knapp, 2002). Although the young stages of tested ants are mute (e.g. DeVries, Cocroft, & Thomas, 1993), Casacci et al. (2013) found that acoustic signalling appears to act as a substitute for other forms of communication in developing *Myrmica* pupae. The various stages of ant brood, from egg to pupa, are afforded ascending levels of priority based on tactile and chemical cues (Brian, 1975). Most are mute, but the older ‘brown’, sclerotized pupae of *Myrmica* species produce calls, produced as single pulses, similar to those of workers (Casacci et al., 2013). This coincides with a presumed reduced ability to secrete brood recognition pheromones during this period, and brown pupae that were experimentally silenced fell significantly behind their mute white siblings in social standing.

Acoustic Signals of Myrmecophiles

Derived acoustic signals that enhance interactions with ants are increasingly being confirmed in both juvenile and adult stages of myrmecophiles. To date, most studies involve riodinid and, especially, lycaenid butterfly larvae and pupae (e.g. Barbero, Thomas et al., 2009; DeVries, 1990, 1991a; Pierce et al., 2002). However, similar phenomena were recently described from adults of a socially parasitic beetle, *Paussus favieri* (Di Giulio et al., 2015), in which males and females produce mimetic stridulations using a row of scrapers on the proximal abdominal segment rasping across a file located on the hind femora (see Fig. 1p–t).

Stridulation Organs

With a few exceptions, an ability to produce calls occurs after the third larval moult in riodinid and lycaenid larvae, coinciding...
with the development of chemical ‘ant organs’, which perhaps suggests they act synergistically (DeVries, 1991a). In most riodinids, acoustic signals are generated by grooved vibratory papillae. These are typically found in pairs on the prothorax, and grate against specialized epipranial granulations when the larva rotates its head (see Fig. 1a–e), especially when walking or under attack, generating low-amplitude substrate-borne calls (DeVries, 1991a). The tribe Eurybini lacks vibratory papillae; instead, caterpillars generate calls by scraping teeth on a prothoracic cervical membrane against the epipranial granulations in at least some mutualists or entomophagous predators of ant-tended Homoptera generate calls by scraping teeth on a prothoracic cervical membrane against the epipranial granulations in at least some mutualists or entomophagous predators of ant-tended Homoptera (DeVries & Penz, 2002; Travassos, DeVries, & Pierce, 2008). The detection of dedicated organs in lycaenid larvae that produce calls has been elusive, apart from a file-and-scraper described between the fifth and sixth abdominal segments of Arthropopla madaytis (Hill, 1993) and a putative organ in Maculinea rebeli larvae (see Fig. 1f, g). In other species strong substrate-borne vibrations (and apparently weak airborne sounds) may be generated by muscular contractions of the abdomen, which compress air through the tracheae to produce distinctive rhythms and intensities in the manner of a wind instrument, as described by Schurian and Fiedler (1991) for Polymomatus detusinus. These vibroacoustic signals range from low background calls punctuated by pulses in mutualists (DeVries, 1991a) to the grunts, drumming and hisses of the host-specific Jalmenus evagoras (Travassos & Pierce, 2000), to the mimetic calls of Maculinea larvae (Barbero, Bonelli et al., 2009; DeVries et al., 1993; Sala, Casacci, Balletto, Bonelli, & Barbero, 2014).

In contrast, the pupae of all lycaenids studied (Pierce et al., 2002) and a minority of riodinids (DeVries, 1991a; Downey & Allyn, 1973, 1978; Ross, 1966) have a well-developed file-and-scraper organ (two pairs in the case of riodinids) situated between opposite segments of the abdomen, that produce substrate- and airborne calls often audible to humans (see Fig. 1h–j). In lycaenids, the plate against which teeth are rubbed may be complex, consisting of tubercles, reticulations or ridges (Alvarez, Munguira, & Martinez-Ibanez, 2014).

ACOUSTIC SIGNALLING IN ANT–MYRMECOPHILE INTERACTIONS

Evidence that the acoustics of myrmecophiles are adaptive to their interactions with ants has progressed from correlative studies to two experimental approaches: mutating the myrmecophile or recording and playing back their calls to undisturbed ant colonies. First, DeVries (1991c) showed that fewer ants attended larvae of the mutualistic riodinid Thistle iberna that had been artificially silenced compared with controls that were able to call, establishing that at least one function of riodinid calls is to attract ants. Similarly, Travassos and Pierce (2000) demonstrated that pupae of the lycaenid Jalmenus evagoras stridulated more frequently in the presence of tridomyrmex anceps ants, and attracted and maintained a larger number of guards than mated ones. The calls convey the pupa’s value as a provider of nutritious secretions to the ants, which does, however, represent a significant cost to the pupae. Tended pupae have been shown to lose 25% of their weight and take longer to eclose than untended ones (Pierce, Kitching, Buckley, Taylor, & Benbow, 1987). In further behavioural experiments Travassos and Pierce (2000) showed that pupae used acoustic signalling to adjust the number of attendant ants. They provided a path from an I. anceps nest to signalling pupae and scored the rate of worker movement in relation to signal strength once the pupa was discovered. This appears to be an important fitness component evolved to attract no more than an adequate number of ant guards against enemy attacks. The larvae of J. evagoras produce more varied acoustic signals than pupae (grunts, hisses and drumming) and are also heavily attended and guarded by their mutualist ant (Pierce et al., 2002). Hisses are produced briefly after encountering a worker, whereas grunts are produced throughout ant attendance. The ability of J. evagoras juveniles to produce distinct vibrations, some probably with different functions, suggests the evolution of a finely tuned acoustic system of communication with their hosts, which might be elucidated using playback experiments.

In parasitic interactions with ant colonies, the clearest evidence to date that some acoustic signals are mimetic involves the highly specialized species of the Myrmica ant–Maculinea butterfly and Rheidole ant–Paususs beetle systems. Initially, DeVries et al. (1993) showed that the calls made by larvae of four Maculinea species differed from those of phytophagous lycaenids in showing distinctive pulses that resembled the stridulations of Myrmica worker ants. This was the first suggestion of mimicry of an adult host attribute by the caterpillars, which appeared to be genus rather than species specific. The insects in early experiments were unavoidably alarmed, being held with forceps during the recording, but a similar genus-specific result was later obtained using modern equipment and unstressed ants and butterflies. Both the pupae and larvae of Maculinea species closely mimicked three attributes of at least 70 line acoustic signals: dominant frequency, pulse length and pulse repetition frequency (Barbero, Bonelli et al., 2009; Barbero, Thomas et al., 2009). However, the calls of both stages were significantly more similar to queen ant calls than they were to worker calls, despite each being generated in a different way (see Fig. 1f–j). Behavioural bioassays, in which the calls of butterflies and ants were played to unstressed Myrmica workers, revealed that the calls of juvenile Maculinea, especially those of pupae, caused workers to respond as they do to queen ant calls. Both types of acoustic stimuli caused worker ants to aggregate, antennate the source of sound, and show significantly higher levels of guarding behaviour than were elicited in response to worker ant calls (Barbero, Thomas et al., 2009).

Similar, but more sophisticated, communication was recently described between the carabid beetle P. favieri, an obligate social parasite in all stages of its life cycle, and its host ant P. pallidula (Di Giulio et al., 2015). Here the adult beetle can generate three types of call when it stridulates, which, respectively, mimic the calls made by the queens, the soldiers and the minor worker caste of its host. These calls elicit a range of responses when played to worker ants, consistent with the intruder’s more diverse activities (compared to juvenile Maculinea) in different parts of the host’s society and nest. Thus P. favieri’s various stridulations can elicit recruitment, including digging (rescue) behaviour, as well as the increased level of ‘royal’ (queen ant) protection observed towards Maculinea pupae and larvae.

LARVAL ACOUSTIC SIGNALS AND PHYLOGENY IN THE LYCAENIDAE

Various authors (e.g. DeVries, 1991a, 1991b; Fiedler, 1998; Pech, Fric, Konvicka, & Zrzavy, 2004; Pellissier, Litsios, Guisan, & Alvarez, 2012; Pierce et al., 2002) have analysed the evolution of myrmecophily in lycaenids and riodinids, including social parasitism in the Lycaenidae, and most concluded that it also provided a template for diversification and radiation in these species-rich families. Pierce et al. (2002) argued convincingly that social parasitism (including entomophagy of the domestic Hemiptera of ants) has evolved independently in at least 20 lineages. The analysis of acoustics as a parameter in evolutionary studies of these taxa was pioneered by DeVries (1991a, 1991b). In seminal early papers, DeVries (1991a, 1991b) found that only lycaenids and riodinids that interacted with ants produced calls, while several
non myrmecophilous members of the tribe Eumaeini were silent. Subsequent studies and reviews confirmed this pattern (e.g. Fiedler, Seufert, Maschwitz, & Idris, 1995) and provided evidence of the use of lycaenid calls in increasing the interaction with ants (Barbero, Thomas, et al., 2009; Pierce et al., 2002; Sala et al., 2014). However, some lycaenid and riodinid larvae and pupae also produce sounds when disturbed by putative predators or parasitoids, even if ants are absent. In addition, other species classed as having no interaction with ants do produce sound (e.g. Alvarez et al., 2014; Downey & Allyn, 1973, 1978; Fiedler, 1992, 1994; Schurian & Fiedler, 1991). The most recent study, by Riva et al. (2016), found that lycaenid sounds are highly specific and are produced by both non- and myrmecophilous species. Calls by species that are least associated with ants consist of shorter and more distant pulses relative to those of species that are highly dependent on them.

Here we further explore the hypothesis that the strength of ant–myrmecophile interactions (using Fiedler’s, 1991 definitions) leads to characteristic sound profiles that may be a better predictor of the similarity of sound between species than their phylogenetic distance. We present a new analysis of the acoustic profiles made by 13 species of European lycaenids, ranging from highly integrated ‘cuckoo’ from parasites (Maculinea alcon, Ma. rebeli) via one host–specific mutualist (Plebejus argus) and a spectrum of generalist myrmecophiles, to species for which little or no interaction is known (Lycaena spp.). The 13 species (see Fig. 2) are a subset of the commensal or mutualistic species used by Riva et al. (2016), with three species of Maculinea added to represent the two levels of intimate integration found in this socially parasitic genus (Thomas, Schönrogge et al., 2005).

Fourth-instar caterpillars (collected under permit from The Italian Ministry for the Environment, protocol numbers: 446/05, DPN/2D/2005/13993 & 0012494/PMN/2015(2015)) were recorded using customized equipment, as described by Riva et al. (2016). We analysed recordings of three individuals per species, randomly selecting two trains of five pulses in each trace. Fourteen sound parameters were measured using Praat v. 5.3.53 (Boersma & Weenink, 2013). These included the lower and higher quartiles of the energy spectrum (Hz), power (dB²), intensity (dB), the root-mean-square intensity level (dB) and the relation of the frequency peak energy to the call total energy (%). Two temporal variables were measured from the oscillogram: the duration of the pulse (s) and the pulse rate (calculated as 1/t start(x)−t start(x+1); per s). Six additional variables were estimated on each pulse by inspection of power spectra: the frequency of the first, second and third peak amplitudes (Hz), the intensity of the first two peaks (dB) and the centre of gravity (Hz).

Hierarchical cluster analyses were performed on a matrix of normalized Euclidean distances over sound parameters, averaged by individual using unweighted pair group average (UPGMA) in Primer v. 6.1.12 (Primer-E Ltd., Auckland, New Zealand). A two-sample t test was used to compare differences between group distances. To test whether species differences reflect degrees of myrmecophily, we used phylogenetic regression as implemented in the library ‘phyreg’ (Grafen, 1989) using R (R Core Team, 2015). Principal components, derived by principal component analysis on log-transformed sound parameters, were correlated with the degree of myrmecophily while controlling for phylogenetic relatedness among species. To assemble a working phylogeny, we used cytochrome oxidase subunit I (COI) sequences of the 13 lycaenid species from two recent studies on the Romanian and Iberian butterflies (Dinca, Zakharov, Hebert, & Vila, 2014; Dinca et al., 2015). Geneious Pro 4.7.5 (Biomatters, http://www.geneious.com/) was used to align COI sequences and to produce a neighbour-joining (NJ) tree. We also included in the phylogeny Hamearis lucina (Riodinidae) and Pieris rapae (Pieridae) as outgroups.

Two trees for species’ phylogenetic distance and for the similarity of acoustic profiles are presented in Fig. 2, together with the score for myrmecophily of each species. Similarities in sound profiles neatly match the spectrum of observed strengths and specificities in myrmecophily across the study species, much more closely than does phylogeny. Overall, PC1 of the acoustic parameters explained 56% and PC2 a further 27% of variation, and both were significantly correlated with the differences in myrmecophilous relationships (PC1: F1,13 = 11.146, P = 0.005; PC2: F1,13 = 6.959, P = 0.020) after accounting for phylogeny using phylogenetic regression.

It is apparent that the sound profiles of Ma. rebeli and Ma. alcon (average Euclidean distance (± 1 SD) between Ma. rebeli and Ma. alcon = 1.65 ± 0.14) are far removed from all other species, including from their congeners Ma. arion and Ma. teleius (Barbero, Bonelli et al., 2009; Sala et al., 2014). Indeed, the mean Euclidean distances in the acoustic signals of Ma. alcon or Ma. rebeli from other lycaenid species are among the highest measured to date (mean Euclidean acoustic distance of Ma. alcon versus lycaenids other than M. rebeli: 7.41 ± 1.00; Ma. rebeli versus lycaenids other than M. rebeli: 7.66 ± 1.01; see also Riva et al. 2016). This is consistent with the intimate level of social integration these species achieve within host ant nests, an association that is so close that in times of shortage the ants kill their own brood to feed these ‘cuckoos’ in the nest (Thomas, Elmes, Schönrogge, Simcox, & Settele 2005). It is also notable that the acoustics of P. argus, the only host-specific myrmecophile among the mutualistic species, is less similar to its nearest relative Plebejus argyrognomon, and appears to converge with the two ‘predatory’ Maculinea social parasites even though its ‘host’ ant, Lasius niger, has no known stridulation organs and belongs to a different subfamily to Myrmica (mean Euclidean acoustic distance of P. argus versus P. argyrognomon: 4.33 ± 0.30; P. argus versus M. arion: 2.51 ± 0.55; paired t test: t16 = −8.723, P < 0.001; distance of P. argus versus Ma. teleius: 3.79 ± 0.28; paired t test: t16 = −3.963, P = 0.001). Scolitantides orion perhaps represents selection in the opposite direction to P. argus, being less host specific than its ancestry or relatives might suggest, as less convincingly, may Polyommatus icarus. Yet despite L. coridon and L. bellargus being close congeners, sounds produced by L. bellargus are much more similar to those produced by P. argyrognomon (belonging to the same myrmecophilous category: 3) rather than to L. coridon (mean Euclidean acoustic distance of L. coridon versus L. bellargus: 3.87 ± 0.15; P. argyrognomon versus L. bellargus: 1.54 ± 0.20; paired t test: t16 = 27.775, P < 0.001). A possible, but untested, explanation is that this reflects a similar disruptive selection via acoustics to that described in sympatric lineages of the ant Pachycondyla, since the juveniles of these congeneric butterflies overlap largely in distribution, sharing the same single species of food plant and often the same individual plant.

However, given the small number of species studied, we caution against overinterpreting the apparent patterns depicted in Fig. 2, and suggest they be tested by comparative behavioural experimentation. We also recognize that vibrations of less or nonmyrmecophilous lycaenids (and other taxa) may have very different functions, such as repelling natural enemies (Bura, Fleming, & Yack, 2009; Bura, Rohwer, Martin, & Yack, 2011). We tentatively suggest that ancestral species in the Lycaenidae were preadapted to myrmecophily through an ability to make sounds, and that once behavioural relationships with ants evolved, the selection regime changed, resulting in adaptive mimetic sound profiles, at least among obligate myrmecophiles.
Ants are known to sometimes use multiple cues to moderate kin behaviour, for example by combining posturing, tactile and chemical interactions to convey complex or sequential information and to elicit particular responses between members of their society (Hölldobler & Wilson, 1990). To date little is known of how acoustic signalling might interact with other means of communication, and less still of whether myrmecophiles manipulate behaviour using multiple cues.

Sound may be used synergistically with other modes of signalling. Hölldobler et al. (1994) studied the role of audible vibrational signals made by the ponerine ant Megaponera foetens, a raider of termite colonies, in the context of trail following and column building. They found that stridulations were produced only during disturbances and for predator avoidance. It is also known that M. foetens has a distinctive pheromone to signal alarm (Janssen, Bestmann, Hölldobler, & Kern, 1995). These observations suggest that vibrations may be used to qualify a general alarm signal that is chemical, but again this requires formal testing. This is in contrast to the observations by Casacci et al. (2013) described above: they found that acoustic signalling appeared to replace chemical and tactile signals, apparently with the same function of signalling rank, but this is not truly a case of multimodal communication.

To date, no direct evidence exists for the behavioural consequences of full synergistic multimodal communication involving acoustics. Yet the interactions of Maculinea butterfly larvae and their Myrmica host ant societies illustrate the importance of both chemical and acoustic mimicry. Here, the acceptance (or rejection) of larvae as members of their host colony appears to be based entirely on a mimetic mixture of chemical secretions, but on this cue alone intruders are treated simply like the low-ranking kin brood (Akino, Knapp, Thomas, & Elmes, 1999; Thomas et al., 2013; Thomas, Schönrogge, et al., 2005). It is the ability simultaneously to produce acoustic calls that mimic adult hosts and that mimic queen sounds that is believed to explain the observed priority ‘royal’ behaviour that workers regularly afford to social parasites, giving them a status that exceeds that of large ant larvae. Not only do these brood parasites gain priority in the distribution of food by nursery workers to the extent that workers feed younger kin ant brood to the Maculinea larvae when food is short, but they are also carried ahead of kin ant brood when moving nest or during rescues (Elmes, 1989; Gerrish, 1994; Thomas, Schönrogge, et al., 2005). Anecdotal observations of the manipulation of P. favieri by the...
beetle P. palidula suggests a similar chemical-acoustic mechanism (Di Giulio et al., 2015), but as with ant–ant communication itself, the putative use of acoustics in multimodal communication requires rigorous testing. About 10 000 species of invertebrates from 11 orders are estimated have evolved adaptations to infiltrate ant societies and live as parasites inside nests (Höldobler & Wilson, 1990). Current studies have largely focused on the family Lycidae among the Lepidoptera and a few selected species of Coleoptera. While the study systems used today provide some variety in the type of interactions with their host ants, there is clearly a vast variety still to be discovered to understand the respective roles of signalling modes and the social interactions in ants and other social insects.

The important role that acoustic signalling has in ant and other social insect societies is well established and it is perhaps unsurprising that other interacting species show adaptations that relate to the host’s acoustic traits. In only a few cases, however, has the social insect societies is well established and it is perhaps unsurprising that other social insects. Roles of signalling modes and the social interactions in ants and other social insects.

In the type of interactions with their host ants, there is clearly a putative use of acoustics in multimodal communication (Di Giulio et al., 2015), but as with ant–ant communication.

Acknowledgments

We collaborated within the project CLIMIT (Climate Change Impacts on Insects and their Mitigation), funded by Deutsches Zentrum für Luft–und Raumfahrt-Bundesministerium für Bildung und Forschung (Germany); Natural Environment Research Council (NERC) (NE/G001901/1) and Department for Environment, Food, and Rural Affairs (U.K.); Agence nationale de la recherche (France); Formas (Sweden); and Swedish Environmental Protection Agency (Sweden) through the FP6 BiodiERVAS Ernanet. Part of the research was funded by the Italian Ministry of Education, University, and Research (MIUR) within the project ‘A multitaxa approach to study the impact of climate change on the biodiversity of Italian ecosystems’. We declare that there is no conflict of interest.

References

Please cite this article in press as: Schonrogge, K., et al., Acoustic communication within ant societies and its mimicry by mutualistic and socially parasitic myrmecophiles, Animal Behaviour (2016), http://dx.doi.org/10.1016/j.anbehav.2016.10.031

SPECIAL ISSUE: COMMUNICATIVE COMPLEXITY

