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ABSTRACT
Alien species may pose substantial impacts on biodiversity around the globe through
international trade and travel. A niche shift hypothesis was proposed to explain the
adaptive change of alien or invasive species in new habitats. However, whether niche
shifts occur in alien species likely depends on both characteristics inherent to the
species itself and its original distribution. Here we identified a newly exotic trap-
jaw ant (Odontomachus troglodytes) in Taiwan by morphological and phylogenetic
analyses. The possible distribution range and the niche shift pattern were evaluated
using ecological niche modelling. The results indicated that exotic O. troglodytes in the
newly distributed area displayed a significant niche shift with low niche overlap and
high niche expansion. This study reveals a long-distance invasive event from central
Africa to Southeast Asia (more than 10,000 km) and predicts the potential distribution
range of this new alien species in Taiwan.

Subjects Biodiversity, Conservation Biology, Ecology, Entomology, Zoology
Keywords Environmental niche models, Exotic species, Niche expansion,
Phylogenetic relationship, Trap-jaw ant

INTRODUCTION
Rapid long-distance travel and international trade have reshaped biodiversity worldwide
in the Anthropocene. Species across several taxa have been shown to have the ability to
access new habitats through human transportation networks, resulting in a breakdown
of biogeographic barriers and an increasing number of invasive species over the last
decades (Hulme, 2009; Capinha et al., 2015; Seebens et al., 2017). Among different taxa,
the spread and invasion of ants (Hymenoptera: Formicidae) are strongly correlated with
human activities. Globalization of some ants may be attributed to their small size, diverse
ecological niche, eusocial characteristic, and polygynous mating system (Bertelsmeier et al.,
2017; Abril & Gómez, 2020; Bertelsmeier, 2021).

In invasion ecology, the niche conservatism hypothesis suggests alien species retain
ancestral ecological niches and occupy new regions with environmental factors similar
to their native range (Wiens & Graham, 2005; Liu et al., 2020). In contrast, the niche shift
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hypothesis is applied to explain the greater tolerance and adaptation to new environments
of invasive species during range expansion (Broennimann et al., 2007; Da Mata et al., 2010;
Tingley et al., 2014). In addition, a recent study found that niche size and native range affect
niche shift, with species with smaller native range sizes experiencing the most significant
niche shift (Bates, Ollier & Bertelsmeier, 2020).

The ant genus Odontomachus (Hymenoptera: Formicidae: Ponerinae) comprises more
than 70 species and is characterized by their ‘‘trap-jaw’’, referring to their long, spring-
loaded mandible (Larabee et al., 2016; Fernandes et al., 2021). Large body size and highly
specialized mandible that can open at 180 degrees make them easily recognized in the
wild. In Taiwan, O. monticola (O. rixosus group) is the only known species of the genus
(Terayama, 2009), commonly seen on low to mid-altitude forest floors. In 2017, amateurs
collected a species belonging to the O. haematodus group in southwestern Taiwan. After
that, the ant becamemuchmore common andmay have succeeded in colonizing Taiwan as
many additional nests were discovered within a 24 km2 area (K-W Chan, pers. obs., 2021).
The ant is characterized by their stout mandible with short, blunt subapical teeth, strongly
striated body sculpture and 4, 3 palp formula (Brown Jr, 1976; Sorger & Zettel, 2011). The
discovery of a conspicuous species close to the port and suburban habitats indicated that
the species was likely introduced by humans.

Previous studies have found that several members of the O. haematodus group have
established populations outside of their native range (Brown Jr, 1976; Fisher & Smith, 2008;
Framenau & Thomas, 2008; Herrera, Longino & Dekoninck, 2014; MacGown et al., 2014;
Deyrup, 2016; Wetterer, 2020). Odontomachus haematodus is native to South America,
whereas populations from eastern Louisiana to the Florida Panhandle were considered
to be exotic (MacGown et al., 2014; Deyrup, 2016). In the case of Odontomachus bauri
and O. ruginodis, both were introduced to the Galapagos Islands from the Neotropical
region, and the Florida population of O. ruginodis was introduced from the West
Indies (Brown Jr, 1976;Herrera, Longino & Dekoninck, 2014;Deyrup, 2016;Wetterer, 2020).
Odontomachus simillimus is a tramp species distributed throughout the Indo-Pacific, and
was introduced to Seychelles (Brown Jr, 1976; Framenau & Thomas, 2008; Fisher & Smith,
2008). Odontomachus troglodytes is native to sub-Saharan African, while the Madagascar
population was possibly introduced (Fisher & Smith, 2008).Therefore, as this species group
appears to be highly invasive, correct identification and a thorough investigation of this
new ant in Taiwan is urgently needed. In this study, we aimed to (1) identify the recently
introduced Odontomachus species in Taiwan, as well as its putative source location; (2)
characterize the potential distribution range of this species in Taiwan by using ecological
niche modelling; and (3) determine whether a niche shift occurred between its native range
and Taiwan. The species was identified by morphological comparison and phylogenetic
analyses. Ecological niche modelling was applied to predict the potential distribution of this
species in Taiwan and examine the niche shift hypothesis by calculating niche similarity
between native and exotic populations. Understanding the potential distribution of the
newly colonized ant in Taiwan may lead to a better management strategy for the ants and
ultimately minimize its environmental impact.
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MATERIAL AND METHODS
Collection localities and DNA sequencing
A total of 26 specimens of Odontomachus ants were collected from Chiayi (n= 13)
(23.49101◦N, 120.47183◦E) and Kaohsiung (n= 13) (22.619682◦N, 120.377824◦E) in
southwestern Taiwan. InKaohsiung,many nests were discovered, and all samples were from
the same nest, while in Chiayi, all samples were trailing ants outside of the nest. Whether
they belonged to the same nest is uncertain. All the specimens collected were preserved in
95% ethanol and stored at−20 ◦C. The species was inspected by morphological characters
using keys and diagnoses provided in Brown Jr (1976) under a stereo microscope (Leica
S9D, Switzerland) and differences were described between the newly exotic ant and other
Odontomachus species. Then, an identification key was developed to identify Ponerinae
trap-jaw ants in Taiwan.

We then sequenced the cytochrome oxidase I gene (COI ) to confirm the morphological
species identification. The genomic DNA was extracted from the right mid-leg of worker
ants using the NautiaZ Tissue DNA Mini Kit (Nautia, Taipei, Taiwan) following the
procedure of other studies (Chen et al., 2017). Polymerase chain reactions (PCR) were
performed to amplify the CO1 gene following the protocol from Vrijenhoek (1994). The
pair of primers, HCO2198 (5′-TAAACTTCAGGGTGACCAAAAAATCA-3′) and LCO1490
(5′-GGTCAACAAATCATAAAGATATTGG-3′), were used for the following experiments.
PCR reactions were conducted in 12.5 µl reaction volumes containing 2.5 mM MgCl2,
5 pmol of each primer, 20 µM dNTPs, 10mM TrisHCl (pH = 8.3), 50 mM KCl, 2 µl of
genomic DNA, and 1 unit of TaqDNA polymerase (Platinum R© Taq DNA Polymerase;
Invitrogen, Waltham, MA, USA). The PCR condition comprises one cycle for denaturation
at 94 ◦C for 5min, followed by 35 cycles of 40 s at 94 ◦C, 40 s at 45 ◦C, and 60 s at 72 ◦C, then
a final process of 5 min at 72 ◦C for an extension. The products of PCR were subsequently
sequenced using ABI 3730 DNA Sequencer (Tri-I Biotech). The sequences generated were
compared with known sequences of the species from NCBI’s GenBank. All the sequences
were deposited in GenBank, with accession numbers listed in Table 1.

Identification of putative source population
In order to identify the exotic species in Taiwan, sympatric or nearby species, and species
with the same identification character, were included in the analyses. Therefore, the
sequences of the COI gene of four congeners were selected in the analyses, which included
one native species of Taiwan (O. monticola), one species distributed close to Taiwan (O.
simillimus is distributed in Asia), and two species with a similar metasternal process (O.
troglodytes in Africa and Madagascar, and O. haematodus from Neotropical). Putative
source population of newly exotic ants can be inferred by comparing sequence similarity
among different populations of the same species. The sequences were aligned by CLUSTAL
W in MEGA-X (Kumar et al., 2018), and those with redundant or missing regions were
trimmed or removed in the following analyses.

To investigate the phylogenetic relationship between different populations of O.
troglodytes and other Odontomachus species, a maximum likelihood tree was built using
RAxML with 100,000 bootstrapping replicates as validation (Stamatakis, 2014). Model
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Table 1 Species, accession number, voucher number, collected localities used in this study.

Organism Sequence_ID Specimen-voucher Locality

Odontomachus monticola ON804843 OMC1 23.707938◦N, 120.70812◦E
Odontomachus monticola ON804844 OMC2 23.707938◦N, 120.70812◦E
Odontomachus monticola ON804845 OMN1 24.648552◦N, 121.432824◦E
Odontomachus monticola ON804846 OMN2 24.648552◦N, 121.432824◦E
Odontomachus monticola ON804847 OMS1 22.41437◦N, 120.72939◦E
Odontomachus troglodytes ON804848 OTC1 23.49101◦N, 120.47183◦E
Odontomachus troglodytes ON804849 OTC2 23.49101◦N, 120.47183◦E
Odontomachus troglodytes ON804850 OTC3 23.49101◦N, 120.47183◦E
Odontomachus troglodytes ON804851 OTC4 23.49101◦N, 120.47183◦E
Odontomachus troglodytes ON804852 OTC5 23.49101◦N, 120.47183◦E
Odontomachus troglodytes ON804853 OTC6 23.49101◦N, 120.47183◦E
Odontomachus troglodytes ON804854 OTC7 23.49101◦N, 120.47183◦E
Odontomachus troglodytes ON804855 OTC8 23.49101◦N, 120.47183◦E
Odontomachus troglodytes ON804856 OTC9 23.49101◦N, 120.47183◦E
Odontomachus troglodytes ON804857 OTC10 23.49101◦N, 120.47183◦E
Odontomachus troglodytes ON804858 OTC11 23.49101◦N, 120.47183◦E
Odontomachus troglodytes ON804859 OTC12 23.49101◦N, 120.47183◦E
Odontomachus troglodytes ON804860 OTC13 23.49101◦N, 120.47183◦E
Odontomachus troglodytes ON804861 OTK1 22.619682◦N, 120.377824◦E
Odontomachus troglodytes ON804862 OTK2 22.619682◦N, 120.377824◦E
Odontomachus troglodytes ON804863 OTK3 22.619682◦N, 120.377824◦E
Odontomachus troglodytes ON804864 OTK4 22.619682◦N, 120.377824◦E
Odontomachus troglodytes ON804865 OTK5 22.619682◦N, 120.377824◦E
Odontomachus troglodytes ON804866 OTK6 22.619682◦N, 120.377824◦E
Odontomachus troglodytes ON804867 OTK7 22.619682◦N, 120.377824◦E
Odontomachus troglodytes ON804868 OTK8 22.619682◦N, 120.377824◦E
Odontomachus troglodytes ON804869 OTK9 22.619682◦N, 120.377824◦E
Odontomachus troglodytes ON804870 OTK10 22.619682◦N, 120.377824◦E
Odontomachus troglodytes ON804871 OTK11 22.619682◦N, 120.377824◦E
Odontomachus troglodytes ON804872 OTK12 22.619682◦N, 120.377824◦E
Odontomachus troglodytes ON804873 OTK13 22.619682◦N, 120.377824◦E

selection was performed using jModelTest v2.1.10 (Guindon & Gascuel, 2003; Darriba
et al., 2012) to find a best-fit model for phylogenetic tree construction based on the
Bayesian information criterion (Darriba et al., 2012). Moreover, a Bayesian phylogenetic
tree was constructed using MrBayes 3.2.7a (Ronquist & Huelsenbeck, 2003), while posterior
probability was estimated by Metropolis-coupled Markov chain Monte Carlo analysis
with four chains running for 1,000,000 cycles. The visualization and compilation of both
phylogenetic trees were conducted on Interactive Tree Of Life (http://itol.embl.de) (Letunic
& Bork, 2019). To further examine the relationship among populations of O. troglodytes,
haplotype networks of the COI gene were constructed using 89 sequences of O. troglodytes
by R package ‘pegas’ (Paradis, 2010).
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Ecological niche modelling and niche shift analysis
The occurrence data included records from the Global Ant Biodiversity Informatics
(GABI) project (105 sites, Guénard et al., 2017), a previous study (174 sites, Bates, Ollier
& Bertelsmeier, 2020), and collection sites in Taiwan (five sites). After combining all three
datasets and removing duplicated data, 209 occurrence points were obtained (Fig. S1A). To
avoid spatial autocorrelation (Boria et al., 2014) while maintaining most of the occurrence
data in Taiwan for the following analyses, the initial set of occurrence data was thinned via a
2-km distance filter by R package ‘spThin’ (Aiello-Lammens et al., 2015). After compilation
and rarefaction, 156 occurrence points were retained for subsequent ecological niche
modelling (Fig. S1B).

A total of 20 environmental variables, consisting of nineteen climatic factors and
one elevation layer, were downloaded from WorldClim (https://www.worldclim.org/) for
niche model construction. Considering the recorded presence ofO. troglodytes in suburban
habitats (Fisher & Smith, 2008) and the strong influence of human land use on ant diversity
(Baidya & Bagchi, 2022), the dataset of human modification and settlement on terrestrial
lands (Kennedy et al., 2020), which provided a cumulative measure of the impacts of an
industrial building, agriculture, transportation and other human settlements, was also
included in the following analysis to evaluate the influence of human activity on the
distribution of ants. To avoid impacts of multilinearity among 21 variables, variance
inflation factors were calculated for rarefaction using the R package ‘usdm’ (Naimi et al.,
2014). The calculation excluded highly correlated factors, and ten variables were retained
(Table S1). Ecological niche modelling was performed using the maximum entropy
approach in MaxEnt, a widely applied software that models potential species distribution
using presence-only data (Philips & Dudík, 2008).

The niche model would be validated while the random test percentage was set as 10,
which meant the occurrence data was split into ‘training’ and ‘testing’ datasets, with 90%
of the occurrence data used for training the model and 10% used to test the model. The
jackknife tests evaluated the contribution of each environmental variable. The visualized
results of ecological niche modelling were plotted in R (R Core Team, 2021).

A principal component analysis (PCA) was performed based on bioclimatic variables
from the ecological niche modelling analysis to examine the environmental variability
across the different distribution areas. To further examine whether niche shift exists
between native and non-native populations of O. troglodytes, niche shift analysis was
conducted using modified codes from Bates, Ollier & Bertelsmeier (2020). A between-class
analysis was performed to identify the axis separating native and non-native populations
(Broennimann et al., 2012), which is subsequently transformed into densities of occurrences
using the R package ‘ecospat’ (Di Cola et al., 2017). The intersection of occurrence densities
was determined by Schoener’s D (Schoener, 1968;Warren, Glor & Turelli, 2008) to measure
niche overlap in the analysis.
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RESULTS
Species and putative source identification
We first suspected the species as O. simillimus by a key to Odontomachus of the Indo-
Australian region in Brown Jr (1976) due to its distribution in Asia. However, the
morphology of the metasternal process (Fig. 1H) showed that the Taiwanese species is
more likely to be another closely related species, either O. haematodus from Neotropical
or O. troglodytes from Africa, two species with very similar morphologies. Brown Jr (1976)
described their differences: O. troglodytes have brown legs, shorter antennal scape, and the
sides of a petiolar node are usually more coarsely striated and opaque. However, it was still
challenging to identify the species merely by these traits. The comparison of the nucleotide
database on GenBank showed that the COI sequence of Taiwanese Odontomachus is 100%
identical corresponding toO. troglodytes (voucher CASENT0009457-D01) fromCameroon
(Fig. 2), indicating this newly recorded species is O. troglodytes. An identification key of
Ponerinae trap-jaw ants in Taiwan was constructed, which included three species of
Anochetus and two species of Odontomachus (Documents S1).

The sequence length of COI genes was 591 bp after alignment by CLUSTAL W, and
a total of 97 sequences were obtained for subsequent analyses. The substitution model
selection in jModelTest suggested ‘‘HKY+ G’’ as the best model according to the Bayesian
information criterion. Both the maximum likelihood tree and Bayesian phylogenetic
tree (Fig. 2) showed that the population of Taiwan and one sample from Cameroon are
monophyletic with high bootstrap support, separated from all the other samples from
Africa. Individuals from Madagascar were clustered with Gabon and Central African
Republic of central Africa populations. This finding indicates that central Africa might be
the closest origin of this alien species in Taiwan. Furthermore, the haplotype network using
COI sequences reveals that 26 individuals from Kaohsiung and Chiayi in Taiwan shared
an identical haplotype with Cameroon, which is different from the rest of the populations
in Africa and Madagascar (Fig. 2).

Temperature differences and precipitation in summer affect the
distribution of Odontomachus troglodytes
The jackknife test results revealed that the analysis’s two variables (BIO18 and BIO03)
were the most critical environment predictors (Fig. S2). The environmental variable
BIO03 representing isothermality (the ratio of diurnal and annual temperature range),
has the most helpful information that is not present in other variables. In contrast, the
environmental variable BIO18 (the precipitation of the warmest quarter) has the most
useful information by itself. Therefore, isothermality and the precipitation of the warmest
quarter contained the most information among selected environmental variables. The
relationship of the probability of predicting occurrences for each variable was shown in
response curve plots (Fig. S3). For the precipitation of the warmest quarter (BIO18), the
logistic outputs increased with the higher variable value until it reached around 1,250
(mm/m2), which represents the positive correlation between the predicting probability of
occurrence and the value of the variables (Fig. S3A). With a medium level of isothermality,
the highest output for isothermality (BIO03) ranges from 60 to 85 (%), indicating a higher
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Figure 1 Workers of twoOdontomachus species in Taiwan. (A–D) Odontomachus monticola; (E–H)
Odontomachus troglodytes. (A, E) Full-face view. (B, F) Lateral view. (C, G) Dorsal view. (D, H) Metaster-
nal process. Photo credit: Fu-ya Chung.

Full-size DOI: 10.7717/peerj.14718/fig-1

prediction probability (Fig. S3B). This finding indicates that the relationships between
essential variables and the prediction probability of the MaxEnt model were different. In
contrast, human modification and settlement did not contribute much to our modelling.
Prediction of possible distribution suggested that the lowland of southern Taiwan are
suitable regions for exotic O. troglodytes (Fig. 3).
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Figure 2 The phylogenetic relationship and haplotype network ofOdontomachus troglodytes.
Populations of O. troglodytes in Taiwan form a monophyletic clade with one sample from Cameroon
based on the same tree topology of maximum likelihood and Bayesian inference tree using mitochondrial
COI sequences. The numbers on the nodes represent the branch support value of the likelihood
bootstrap/Bayesian posterior probability. In the haplotype network, each bar indicates the corresponding
nucleotide change among different haplotypes. Each circle represents a haplotype, whose size is
proportional to the numbers of individuals posing this haplotype. The individuals from Taiwan and
Cameroon have identical haplotype. The location of each population was marked using different colors.

Full-size DOI: 10.7717/peerj.14718/fig-2

Niche shift and expansion patterns
Based on the principal component analysis, both exotic populations (Madagascar and
Taiwan) occupy different habitats than the native range, and also inhabit different
environments (Fig. S4). The first two axes of the PCA analysis explained 65.6% of the
total variation of environmental variability across the distribution ranges of O. troglodytes
(PC1 = 35.2% and PC2 = 30.4%). The first component (PC1) was primarily explained
by the mean diurnal range (BIO02), whereas the second was principally loaded by the
max temperature of the warmest month (BIO05) (Fig. S5). To evaluate niche shift
patterns of O. troglodytes after adding invasive records in Taiwan, we applied methods
modified by Bates, Ollier & Bertelsmeier (2020) to estimate niche similarity and expansion
patterns. When analyzing Taiwan together with the original dataset from Bates, Ollier
& Bertelsmeier (2020), continental Africa (native), Madagascar (invasive), and Taiwan
(invasive) populations of O. troglodytes all showed small D overlap and high niche
expansion under PC1 factors (Fig. 4). Under PC2 factors, Taiwan again showed small
D overlap and high niche expansion compared to continental Africa and Madagascar;
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Figure 3 Potential distribution range ofOdontomachus troglodytes in Taiwan. The blue spots indi-
cate collection sites. The color gradient indicates environmental suitability of O. troglodytes, while the ar-
eas with high suitability mainly appear in southwestern Taiwan.

Full-size DOI: 10.7717/peerj.14718/fig-3

however, continental Africa and Madagascar now showed an increase in D overlap and no
niche expansion (Fig. S6).

DISCUSSION
Long-distance invasion and low genetic diversity of Odontomachus
troglodytes
Using morphological and genetic analyses, we describe O. troglodytes as a new alien species
in Taiwan. From the phylogenetic and haplotype analyses, the COI sequences of 26
individuals from two locations in Taiwan were identical and shared the same haplotype
with a sample from Cameroon. For newly exotic species, the founder effect can be observed
with low genetic diversity in the exotic populations, and haplotypes of exotic populations
might derive from the most common ones of native populations.Odontomachus troglodytes
are widely distributed in Africa. However, we only have minimal samples from this area
and one from Cameroon. In our study, Madagascar origin can be excluded or, more likely,
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Na�ve Madagascar Taiwan

Na�ve vs. Taiwan
D = 0, expansion = 100%.

Taiwan vs. Madagascar
D = 0.09, expansion = 91%.

Na�ve vs. Madagascar
D = 0, expansion = 100%.

Figure 4 Similar patterns of niche overlap and niche expansion among three populations. The color of
each polygon represents the status of each population, while the blue one is the native population, the red
and green ones represent the non-native population from Madagascar and Taiwan, separately.

Full-size DOI: 10.7717/peerj.14718/fig-4

the ant was introduced from Cameroon or nearby, although more sampling from its native
range is needed.

In addition to the invasive record in Madagascar, Odontomachus troglodytes discovered
in Taiwan are the second invasive population outside their native area. This study revealed
a long-distance invasive event from West-Central Africa to Taiwan, even though the
commercial trade during these years was not frequent between Cameroon and Taiwan
(https://cuswebo.trade.gov.tw/FSC3010F/FSC3010F), or the ant has traversed through
multiple trade routes. Although no literature has recorded that this ant was found in
surrounding area of Taiwan, such as China or Japan, the pet trade in ants is extremely
common recently. From 2002 to 2017, at least 520 ant species from 95 genera were sold
online, including some Odontomachus species (Gippet & Bertelsmeier, 2021). Therefore, it
is also possible that this ant may have been illegally transported to Taiwan for the purpose
of being kept as a pet (Gippet & Bertelsmeier, 2021). The ants might be imported via the
Port of Kaohsiung, close to the area occupied by O. troglodytes. Outside of Kaohsiung and
Chiayi, there is no indication that this species has spread to other areas. According to our
findings, humans may have transported the individuals that colonized Chiayi as the two
localities shared the same haplotype. The results of this study implicate the importance
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of correct identification of exotic species, and further can be applied to invasive risk
management.

The potential niche shifts of exotic Odontomachus troglodytes
The result shows that there is no niche overlap between populations in native regions and
Taiwan, indicating a niche shift has occurred in the newly introduced Taiwanese population
(Fig. 4, Fig. S6).On the other hand, the finding also suggests lowniche similarity between the
two non-native populations, Taiwan and Madagascar, which is consistent with the results
of the principal component analysis. Overall, the results of niche shift analyses support that
low niche overlap and high niche expansion among native and two exotic populations ofO.
troglodytes. Odontomachus troglodytes colonized Madagascar and displays significant niche
expansion and no niche overlap between native and non-native populations (Bates, Ollier
& Bertelsmeier, 2020). After incorporating the new distribution data in Taiwan from this
study, the results remained congruent. A niche shift was also found between Madagascar
and Taiwan, and the two populations also occupy different habitats in PCA analysis.
Although O. troglodytes in Cameroon and Taiwan share identical haplotypes and are
closely related populations, after colonizing Taiwan from Cameroon, they quickly adapted
to the new environment. The result indicated that O. troglodytes might adapt to various
habitat types during the invasion. Given its wide native distribution range, this tolerance to
a wide variety of habitats may represent a pre-adapted ability to become invasive. Some ant
species have experienced niche shift between native and non-native populations, including
climate shift (Kumar et al., 2015) or diet shift (Balzani et al., 2021). In niche shift analysis
in our study, although the exotic O. troglodytes might have an established population in
Taiwan, the distribution of ants is still limited due to the recent colonization. The few
sample localities compared to the original wide distribution in Africa might cause bias
estimation in the niche shift analysis.

The potential impacts of Odontomachus troglodytes on native species
and human
Odontomachus haematodus, the invasive congener in North America, is an aggressive
stinger that could cause pain if the nest is disturbed (MacGown et al., 2014). In Taiwan, O.
troglodytes show similar aggressive behaviour to disturbance. Because O. troglodytesmainly
inhabits and nests underground, it could become a harassment to humans, especially if
they adapt to urban areas with plantations. Because the newly colonized populations are
close to human area, several cases showed that alate queens of O. troglodytes can intrude
indoors by nuptial flight which might be attracted by light in the house. However, the
settlement of the ant in an indoor environment is not confirmed.

Odontomachus troglodytes was not on the list of the Global Invasive Species Database
developed by IUCN. Therefore, this alien species might be considered harmless to the
local ecosystems or native species. However, our field observation in Taiwan found that
O. troglodytes can capture prey efficiently, and the prey included highly mobile species
(e.g., leafhoppers, midges and blow flies) (Fig. S7). Therefore, more studies are needed to
evaluate if they pose a significant threat to local invertebrates.

Lin et al. (2023), PeerJ, DOI 10.7717/peerj.14718 11/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.14718#supp-7
http://dx.doi.org/10.7717/peerj.14718#supp-8
http://dx.doi.org/10.7717/peerj.14718


Previous studies showed that O. troglodyes is polygynous, their colonies could possess
over one thousand workers, and their workers are potentially fertile, producing males
(Ledoux, 1952;Colombel, 1970;Colombel, 1972; Schmidt & Shattuck, 2014). These biological
characteristics may indicate the potential for population expansion. However, a detailed
observation of this species’ life history and ecological traits in Taiwan is still lacking. Based
on species distribution modelling, lowland areas of southern Taiwan are highly likely to be
occupied by exoticO. troglodytes. Therefore, long-termmonitoring of population dynamics
and observation of life history traits of this species are required for future interspecific
competition with native species and conservation risk assessment.

CONCLUSIONS
This study discovered the first record of Odontomachus troglodytes in Taiwan based on
morphological comparison and phylogenetic analysis. These findings confirm a new alien
ant species in Taiwan, its putative source from central Africa, and provide related ecological
information. The possible distribution of O. trolglodytes is predicted through ecological
niche modelling, which mainly appears in southern Taiwan. The niche shift hypothesis was
tested by calculating niche similarity between native and exotic populations, and the results
indicated a significant shift of ecological niches within this species. Moreover, we suggest
monitoring new exotic species is essential for evaluating the potential threat in invasion
ecology.
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