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HYBRIDIZATION IN ANTS 

Ian Butler, Ph.D. 
The Rockefeller University 2020 

 
Interspecific hybridization is a relatively common occurrence within all animal groups. 

Two main factors make hybridization act differently in ants than in other species: eusociality and 

haplodiploidy. These factors serve to reduce the costs of interspecific hybridization in ants while 

simultaneously allowing them to take advantage of certain benefits. Eusociality may mitigate the 

effects of hybridization by allowing hybrids to be shunted into the worker caste, potentially 

reducing the effects of hybrid sterility. In haplodiploid species, males do not have a father. They 

instead develop from unfertilized eggs as haploid clones of their mother. This means that 

interspecifically mated queens do not completely sacrifice reproductive potential even if all 

hybrids are sterile because they can still produce fertile males. These factors in turn suggest that 

hybridization should be more common among the social Hymenoptera than other animal groups. 

Nevertheless, current data suggest that ants hybridize at rates similar to other animal groups, 

although these data are limited. Furthermore, there is a large amount of overlap between cases of 

interspecific hybridization and cases of genetic caste determination. A majority of the cases in ants 

where caste is determined primarily by genotype are associated with hybridization. However, it is 

not clear how these two phenomena are related, and more research is needed to answer this 

question. 

As a first step in answering these questions, I designed a set of microsatellite markers for 

use in African driver ants in the genus Dorylus. Additionally, to facilitate population genetics 

research in all ant species I aimed to develop a set of primers that are broadly applicable to most 

ant species, since PCR primers for microsatellite loci are often not useful outside the species for 

which they were designed. I identified 45 conserved microsatellite loci based on the eight ant 



  

genomes that were available at the time and designed primers for PCR amplification. Among these 

loci, I chose 24 for in-depth study in six species covering six different ant subfamilies. On average, 

11.16 of these 24 loci were polymorphic and in Hardy-Weinberg equilibrium in any given species. 

The average number of alleles for these polymorphic loci within single populations of the different 

species was 4.59. This set of genetic markers will thus be useful for population genetic and colony 

pedigree studies across a wide range of ant species, supplementing the markers available for 

previously studied species and greatly facilitating the study of the many ant species lacking genetic 

markers. This work shows that it is possible to develop microsatellite loci that are both conserved 

over a broad range of taxa, yet polymorphic within species, and should encourage researchers to 

develop similar tools for other large taxonomic groups. 

After the development of these microsatellites, I used them to investigate a system of 

hybridization between two species of African driver ants. All driver ants belong to the subgenus 

(Anomma) in the genus Dorylus. They are swarm-raiding army ants with colonies that can have as 

many as 12 million individual ants. Colonies frequently migrate to new nest sites and conduct daily 

swarm-raids, capturing and eating any invertebrates or even small vertebrates in their path. 

Colonies are monogynous, and the queens are highly multiply mated, mating with as many as 20 

males. A previous study suggested that hybridization occurs between Dorylus molestus and 

Dorylus wilverthi at a site in western Kenya. However, the extent and exact pattern of hybridization 

have remained unclear, and its possible effect on caste determination has not been investigated. I 

aimed to determine the extent and direction of hybridization by measuring how frequently hybrids 

occur in colonies of both species, and to investigate the possibility of genetic caste determination. 

I show that hybridization is bidirectional and occurs at equal rates in both species. Hybrid workers 

make up only 1–2% of the population, and successful interspecific matings represent 



  

approximately 2% of all matings in both species. This shows that, although interspecific matings 

that give rise to worker offspring occur regularly, they are much rarer than intraspecific matings. 

Finally, I find no evidence of an association between hybridization and genetic caste determination 

in this population. Genetic caste determination may be associated with hybridization, but it is not 

a necessary outcome of it in ants. 

 Although there was no evidence of genetic caste determination, studying this Dorylus 

system has uncovered the potential for a novel project. After viewing collection data from a 

collaborator, Caspar Schöning, I hypothesized that Dorylus ants in the subgenus Anomma would 

constitute a good system for addressing an unanswered question in evolutionary biology: what is 

the relationship between the permissibility of the genome to introgression between two species 

and divergence time? Dorylus (Anomma) is a good system for this study because it has multiple 

species with different areas of allopatry and areas of sympatry with other species in the group. This 

project would involve sequencing multiple samples of each species from both allopatric and 

sympatric areas and comparing the genomes of samples from areas of allopatry to those from areas 

of sympatry to measure the amount of introgression between multiple species pairs. A model is 

then fit to a plot of the amount of introgression versus divergence time to determine the shape of 

the relationship. 
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Chapter 1: Introduction 

 

Speciation is the process by which two populations diverge and begin to accumulate 

genetic differences that contribute to reproductive isolation, and ultimately results in these 

populations becoming two reproductively isolated species. Hybrid zones occur when two 

populations encounter each other before reproductive isolation is complete and produce 

interspecific hybrids. In many cases of animal hybridization, the most noticeable consequences are 

sterility or inviability of hybrid offspring due to incompatibilities between the genomes of the 

parental species (Coyne & Orr, 2004). For example, many instances of hybridization in 

Lepidoptera result in higher rates of inviability or sterility in the hybrid offspring compared to pure 

species (Presgraves, 2002). Extrinsic consequences are less immediately severe but are equally 

important for limiting interspecific mating and hybridization. These may include situations where 

hybrids are unable to utilize resources commonly exploited by the parental species or unusual 

courtship behaviors displayed by the hybrid that make mate seeking less successful (Arnold, 1997; 

Arnold, 2006; Coyne & Orr, 2004). To take another example from Lepidoptera, hybrids between 

two species of Heliconius butterflies have reduced success when attempting to court either of the 

parental species (Naisbit et al., 2001). 

 

Consequences of hybridization in ants 

Ants can suffer the same consequences of hybridization as most other species. For example, 

F1 hybrid queens between Temnothorax nylanderi and T. crassispinus had reduced viability, were 

smaller than pure lineage queens, and suffered extremely reduced colony founding success (Pusch 

et al., 2006a). Hybrid populations of Solenopsis invicta x S. richteri showed higher fluctuating 
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asymmetry (random deviations from perfect bilateral symmetry in individuals) than pure 

populations (Ross & Robertson, 1990), and in lab crosses of various social parasitic Temnothorax 

species, hybrid males were less vigorous in their mating attempts and copulations were less likely 

to result in insemination (Jessen & Klinkicht, 1990). 

Ants can suffer additional consequences of hybridization not experienced by most other 

species due to two aspects of their biology: haplodiploidy and eusociality. In haplodiploid species, 

males are haploid clones of their mother (usually the queen) and are produced from unfertilized 

eggs in a process called arrhenotokous parthenogenesis. Females, on the other hand, are produced 

via normal sexual reproduction. This means that a queen that has mated with a heterospecific male 

will still produce purebred sons while producing hybrid female workers. Hybrid males can only 

be produced in the F2 generation as sons of hybrid queens. A heterospecifically mated queen 

therefore does not completely sacrifice her reproductive potential even if all hybrid offspring are 

sterile. This is the case in the socially parasitic ant genus Temnothorax where laboratory crosses 

did not produce hybrid males in the F1 generation, but hybrid queens did produce them in the F2 

generation (Jessen & Klinkicht, 1990). F2 hybrid males are therefore equivalent to the F1 

generation of males in species where they are produced sexually. 

Eusocial species are characterized by reproductive division of labor, having one or several 

reproductive individuals and a large number of non-reproductive workers. Some of the 

consequences of hybridization can be mitigated as long as hybrids are viable. In most species, 

workers far outnumber reproductives, so the majority of hybrids will be part of the worker caste, 

which normally does not reproduce, thereby minimizing the effect of hybrid sterility. This can be 

taken to an extreme in some cases, when all hybrids are shunted into the worker caste, and none 

ever appear in the reproductive caste (Anderson et al., 2008a; Schwander et al., 2010).  
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Many biologists argue that the gene is the fundamental unit of selection, but genes can act 

at multiple levels to maximize their own fitness (Dawkins, 1976), and in many eusocial species, 

selection appears to act at both the level of the colony and the individual (Bourke, 2011; Breed, 

1989; Keller & Reeve, 1999; Marshall, 2015; Okasha, 2006). This can be particularly true in some 

ant species that have an irreversible worker caste (e.g. Crespi & Yanega, 1995; Boomsma, 2007) 

where workers are incapable of transforming into a reproductive form or otherwise initiating 

reproduction. Colony level selection can make hybridization beneficial in some situations. There 

are no studies showing that hybridization directly contributes to an increase in fitness, but 

increased intracolonial genetic variance is hypothesized to confer numerous colony level benefits 

(Boomsma & Ratnieks, 1996; Bourke & Franks, 1995; Crozier & Fjerdingstad, 2001; Crozier & 

Page, 1985; Crozier & Pamilo, 1996; Nonacs, 2017; Oldroyd & Fewell, 2007). In honeybees, 

different polyethisms based on different worker subfamilies within a colony have been identified 

(Calderone et al., 1989; Calderone & Page, 1988; Calderone & Page, 1991; Dreller et al., 1995; 

Fewell & Page, 1993; Frumhoff & Baker, 1988; Fuchs & Moritz, 1999; Oldroyd et al., 1991; 

Oldroyd et al., 1992a; Oldroyd et al., 1992b; Oldroyd et al., 1993; Page et al., 1989; Page & 

Robinson, 1991). Although direct evidence is lacking, if worker behavior is in part under genetic 

control, then higher genetic diversity among the worker caste may allow colonies to exploit more 

resources or environmental conditions (Crozier & Page 1985; Oldroyd et al., 1995; Oldroyd et al., 

1996; Robinson & Page, 1989; Page et al., 1989; Page et al., 1995).   

Increased genetic diversity can also mitigate against the effects of parasitism by increasing 

intracolonial resistance (Cremer et al., 2007; Hughes & Boomsma, 2004; Schmid-Hempel, 1995; 

Schmid-Hempel, 1997; Schmid-Hempel, 1998; Schmid-Hempel & Crozier, 1999; Sherman et al., 

1988; Shykoff & Schmid-Hempel, 1991a; Shykoff & Schmid-Hempel, 1991b). A colony with 
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lower genetic diversity has a large number of genetically similar individuals living in close 

proximity. A pathogen or parasite that is adapted to the particular genotypes within the colony can 

spread rapidly and, if the infection is severe enough, may cause the colony to die completely 

(Schmid-Hempel, 1997). Increased genetic diversity would prevent such a pathogen from 

spreading quickly within the colony (Schmid-Hempel, 1995). In honeybees, increased genetic 

diversity has been associated with a greater ability to thermoregulate the colony environment 

(Jones et al., 2004), and in Pogonomyrmex harvester ants, low within-colony relatedness correlates 

with increased colony growth rate (Cole & Wiernasz, 1999).  

Hybridization may additionally provide an increase in colony genetic diversity as an 

extreme form of outbreeding (Boomsma et al., 2009). Outbreeding can reduce production of 

diploid males (Page & Metcalf, 1982; Pamilo et al., 1994), which are sterile and impose a 

metabolic cost if they are reared instead of workers (Crozier & Pamilo, 1996), and a high diploid 

male load can be fatal to a colony (Tarpy & Page, 2001; Tarpy & Page, 2002). In Hymenoptera, 

sex is determined by a complementary sex-determination (CSD) locus. Females are produced 

when the locus is heterozygous, and males are produced when the locus is homozygous or 

hemizygous. If a queen mates with a male that carries one of her CSD alleles, half of the offspring 

produced from that mating will be sterile diploid males (Beye et al., 2003; Whiting, 1933). 

Outbreeding via hybridization may increase the number of alleles the queen can potentially be 

exposed to and reduce the chances of producing diploid males, although this is only likely to 

provide a benefit in polyandrous or polygynous colonies where the negative consequences of 

hybridization can be diluted among the worker population, and fertile reproductives can be 

produced in sufficient numbers. 
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Polyandry (queens having multiple mates) and polygyny (multiple queens in a single 

colony) are further ways to increase intracolonial genetic diversity and have the possibility of 

contributing to the factors listed above. Additionally, they may dilute the negative consequences 

of hybridization in another way. High mating frequencies may reduce the potential deleterious 

effects of occasional interspecific hybridization because in each case only a small proportion of 

the workers in a colony will be affected. Because in many ant species workers normally do not 

reproduce, common and often significant consequences of hybridization, such as hybrid sterility, 

will incur no or little additional cost. Polyandry reduces the relative genetic contribution of each 

individual male, so as long as the queen has mated with a sufficient number of conspecific males, 

the cost of interspecific mating is low. 

Polygyny may similarly reduce the colony level costs of interspecific matings if most 

queens mate conspecifically with only a few mating interspecifically. Some queens in polygynous 

colonies forego production of new queens in favor of workers (Helms Cahan & Vinson, 2003), so 

interspecific matings would bear little additional cost if those queens were already destined to 

produce workers. Furthermore, polyandry and polygyny can have additional benefits that 

counteract any negative consequences of hybridization.  In bumblebees and honeybees, colonies 

headed by polyandrous queens had a lower rate of disease infection (Baer & Schmid-Hempel, 

1999; Liersch & Schmid-Hempel, 1998; Palmer & Oldroyd, 2000; Palmer & Oldroyd, 2003; 

Seeley & Tarpy, 2007; Tarpy & Seeley, 2006). Multiply mated honeybee queens founded colonies 

more quickly (Matilla & Seeley, 2007), and multiply mated bumblebee queens produced more 

reproductive offspring (Baer & Schmid-Hempel, 1999) when compared to singly mated queens.   

Hybrid vigor (also called heterosis or outbreeding enhancement) is the improvement of 

biological traits in hybrid offspring and has been observed in a number of species (Chen, 2010). 
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This phenomenon is often accompanied by deleterious hybrid traits such as sterility. However, as 

previously explained, the colony can be seen as the unit of selection in eusocial species, and hybrid 

vigor can confer colony level benefits. Hybrid workers can receive any benefits of hybrid vigor 

without the cost of sterility because workers are normally sterile anyway. This has been observed 

at least one time in ants. Hybrid workers between Solenopsis invicta and S. richteri were more 

tolerant of low temperatures than either pure species workers (James et al., 2002), which could 

provide a selective benefit to the colony in the introduced range in Mississippi, USA compared to 

their native range in South America. 

 

How common is hybridization in ants? 

On the level of the individual hybridization is rare, affecting very few individuals within a 

population. This statement is necessarily true because if hybridization were common at this level, 

gene flow between the involved populations would make the species indistinguishable from one 

another. Under these circumstances, they would not be classified as distinct species under most 

species concepts (Mallet, 2005). On the other hand, zoologists have come to recognize that natural 

hybridization is relatively common at the species level among all animal groups (Mallet, 2005; 

Mallet, 2007). Although hybridization is rare within a population, a relatively small number of 

hybrids can facilitate introgression between different species, and even low rates of hybridization 

can have significant evolutionary consequences (Arnold, 1997; Arnold, 2006).  

Numerous cases of natural hybridization have been identified among nearly all animal 

groups, but there have been few attempts to estimate the frequency of hybridization for large 

taxonomic groups in the wild, (i.e. the number of species that naturally hybridize and the 

proportion of all species they represent) (Mallet, 2005). One such attempt was in North American 
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fishes where the percent of species forming hybrids with at least one other species ranged from 

~3% in the perch family to 17% in Pacific minnow species (Hubbs, 1955). Another attempt 

estimated that, worldwide, 9.2% of all bird species hybridize (Grant & Grant, 1992). Combining 

these estimates with those from smaller taxonomic groups, Mallet (2005) estimates that 

hybridization occurs in approximately 10% of all animal species. That is, 10% of animal species 

naturally form hybrids with at least one other species.  

Feldhaar et al. (2008) claim that hybridization should be more common in ants than in other 

groups. They make this claim based on two aspects of ant biology. First, ants are eusocial, so the 

negative consequences of hybridization can be mitigated if the effects, namely hybrid sterility, are 

felt predominantly by the worker caste. Colonies produce far more workers than queens, so as long 

as some fertile queens are produced the consequences for colony growth and maintenance are 

minimal. Second, male ants are haploid and are produced from unfertilized eggs laid by the queen. 

This means that heterospecifically mated queens do not completely forego reproduction. As long 

as they can still lay viable eggs, they can produce haploid males, even if all diploid offspring are 

sterile. 

Seifert & Goropashnaya (2004) estimate that 12% of all ant species hybridize. This level 

is comparable to the overall estimate for animals, as well as with the estimates for other large 

taxonomic groups. This estimate is for ants overall, but there is a large amount of variation among 

the lower level taxa that this estimate is drawn from. For example, 60% of the ant species in the 

Formica rufa group of central Europe hybridize with at least one other species (Seifert & 

Goropashnaya, 2004), whereas only 10% of all central European ants do (Seifert, 1999). Similar 

to the overall estimate for ants, this is comparable with hybridization rates in other animals as well. 

In birds, 76% of British duck species hybridize and 43% of birds of paradise hybridize while no 
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hybridization events have been found among Warblers of the western Palearctic (Mallet, 2005). 

Although empirical research into hybridization rates in ants is scant, the limited data presented in 

this thesis suggest that ants are consistent with respect to broader patterns of hybridization, and 

they do not hybridize at a higher or lower rate than any other group of organisms. More studies 

are needed to determine if ants hybridize more readily than other groups. 

 

Where does ant hybridization occur? 

Feldhaar et al. (2008) compiled a list of all known instances of hybridization between 

various ant species. Several new cases have been identified since that publication, and their list 

has been expanded here to include these (Table 1.1). In total, there are 30 cases in ants where there 

is evidence that F1 hybrids of any caste are present in the wild population. 

Europe represents the best-studied geographical area with 19 of 30 cases occurring there. 

North America and Asia have only five and four cases each, respectively. There are two in South 

America, one in Africa, and no cases have been described from Australia or any Pacific islands. 

This discrepancy in the number of cases of hybridization by continent is undoubtedly due to study 

bias. Europe, particularly central Europe, is the most extensively studied area, and it has by far the 

highest number of described cases of interspecific hybridization. More research in less well-

studied areas will surely uncover more cases of hybridization in ants. In fact, several studies have 

uncovered cases of likely hybridization, but further work is needed to confirm this (Eyer et al., 

2017; Feldhaar et al., 2003; Feldhaar et al., 2010; Pringle et al., 2012; Schlick-Steiner et al., 2005; 

Seifert, 1999). 
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Genetic caste determination (GCD) 

Environmental factors have long been the main focus of caste determination research 

(Anderson et al., 2008a), but a genetic bias to caste determination has been claimed in many 

different eusocial species. The most common bias detected is that between different worker 

subcastes. There is a clear genetic component to size in all animal species (Conlon & Raff, 1999), 

and in many ant species this manifests in a genetic component to caste development with workers 

of different sizes taking different roles in the colony (Schwander et al., 2005). These differences 

can involve differences in size or morphology (Hughes et al., 2003; Jaffé et al., 2007; Rheindt et 

al., 2005) or predisposition to different behavioral tasks (Fraser et al., 2000; Julian & Fewell, 2004; 

Schwander et al., 2005; Smith et al., 2008; Stuart & Page, 1991). 

There can also be a genetic component to different queen morphs. In populations of the 

fire ant Solenopsis invicta, there is a locus with two alleles, B and b, that controls queen size and 

colony monogyny or polygyny. Being homozygous for the B allele makes a queen larger and head 

of a monogynous colony, whereas being heterozygous makes them smaller and gives rise to 

polygynous colonies. Workers that have the b allele apparently recognize the presence of the same 

allele in queens, and attack and remove BB queens that initiate reproduction from polygynous 

colonies. Workers in monogynous colonies are aggressive to foreign queens regardless of 

genotype. Being homozygous for the b allele is lethal (Keller & Ross, 1998).  

 Another example comes from the slave-making ant Harpagoxenus sublaevis. Queens of 

this species can be gynomorphic (winged) or ergatomorphic (wingless). This polymorphism is 

under the control of a single locus with two alleles. Queens that are homozygous for the recessive 

allele, e, can be either gynomorphic or ergatomorphic, while queens with the genotypes EE or Ee 
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are always ergatomorphs. The dominant allele, E, likely increases some inhibitory effect on the 

likelihood of a larva developing into a gynomorphic queen. The two morphs have no apparent 

difference in fecundity but show a difference in caste ratios so that the EE and Ee genotypes 

produce more worker offspring. A likely explanation for the maintenance of this system is that 

balancing selection keeps both morphs present in the population. Gynomorphic queens have a 

fitness advantage by producing more reproductive offspring while ergatomorphic queens produce 

a higher proportion of workers. More workers presumably increase the chance of successful slave 

raids, which are necessary for the survival of these colonies (Buschinger & Winter, 1975; Winter 

& Buschinger, 1986).  

 One more example comes from Leptothorax species A from Quebec, Canada. As in H. 

sublaevis, there are two queen morphs that appear to be under the control of a single locus with 

two alleles. These alleles are similarly called E and e, but in neither species has the specific locus 

been identified. The dominant allele is hypothesized to suppress the development of ocelli, wings, 

and queen-like thoracic structures in larvae that are destined to become queens, causing the 

genotypes EE and Ee to become intermorphic queens (so-called because they show intermediate 

morphology between queens and workers). Queens with the ee genotype become gynomorphic 

queens. The different morphs are further hypothesized to be maintained by trade-offs in mating 

strategy that are suited to different environments. Gynomorphic queens fly several meters away to 

mate and then fly even farther to found a new colony, while intermorphic queens mate near their 

home nest and tend to live in patchier habitats where flying queens may become lost and unable 

to found a new colony (Heinze & Buschinger, 1986; Heinze & Buschinger, 1989). 

Perhaps the more interesting form of genetic caste determination is that between queens 

and workers because this gives rise to genetic conflict within the population. Patrilines that give 
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rise to reproductive queens should have higher fitness than those that give rise to non-reproductive 

workers (Anderson et al., 2008a, Linksvayer et al., 2006). Males who produce workers should be 

selected against because their effective fitness is zero when workers do not reproduce. However, 

workers are required for the normal function of eusocial colonies, so a reduction in the number of 

workers produced would lead to death of the colony. This creates a genetic conflict between queens 

and males. Queens need males that give rise to workers for the normal function of the colony, 

while males gain a significant fitness advantage by contributing primarily or exclusively to the 

reproductive caste. Several cases have been observed in ants where there is a genetic component 

to differential caste development between workers and queens. While the contributions of genetics 

and environment almost certainly lie on a continuum ranging from completely environmentally 

determined to completely genetically determined caste, Schwander et al. (2010) and Anderson et 

al. (2008a) provide a useful framework for discussing GCD by dividing the observed cases into 

several classes; those with a small genetic component to caste determination, and those with a 

strong genetic component where caste is primarily or exclusively under genetic control. 

 

Weak genetic caste determination 

Several studies have found that some patrilines were more likely to be represented in the 

reproductive offspring, giving the appearance of a genetic component to caste determination. In 

Acromyrmex echinatior, 20% of patrilines were overrepresented among new queens (Hughes & 

Boomsma, 2008). In Pogonomyrmex badius (Smith et al., 2008) and Formica truncorum (Keller 

et al., 1997), 4% and 12.5% of patrilines were similarly overrepresented, respectively. In 

Pogonomyrmex rugosus, different crosses of males and queens in field colonies produced different 

proportions of queens and workers, suggesting that the apparent bias results from the interaction 
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of maternal and paternal genomes rather than some lineages being predisposed to queen 

development (Schwander & Keller, 2008). Another study compared the reproductive outputs of 

different queens of the ant Cardiocondyla kagutsuchi. New queens from two stock colonies were 

mated with males from a third colony. The two stock colonies produced similar numbers of 

offspring over their lifetimes, but the ratio of queens to workers differed, suggesting that eggs in 

either colony differ in their propensity to become queens due to maternal or genetic effects 

(Frohschammer & Heinze, 2009). While it is possible that some patrilines may be genetically 

biased towards production of queens over workers, other factors may also play a role. In 

Pogonomyrmex occidentalis, an apparent genetic component to caste determination may be more 

easily explained by patriline shifting (Wiernasz & Cole, 2010) where colonies raise genetically 

distinct cohorts at different times that differ in caste composition. The difference in patriline 

contribution to different castes may not be the result of differential allocation of patrilines, but of 

which ejaculate is used to fertilize any given cohort. Furthermore, colonies may adjust the caste 

ratio of each brood cohort according to the needs of the colony. In Pheidole pallidula, soldier 

production was observed to increase when a colony was presented with nearby competition from 

conspecific colonies (Passera et al., 1996). Colonies of Pheidole flavens were observed to alter 

their worker caste ratios in response to food availability (McGlynn & Owen, 2002). Monomorium 

pharaonis was observed to alter production of sexuals to meet the current colony requirements for 

growth and fitness (Warner et al., 2018). Reproductive cohorts could be produced only at certain 

times, such as during mating season or in response to changing colony conditions, and the 

overrepresentation of certain patrilines within in the reproductive caste could be explained by 

temporal variation in sperm use. Furthermore, sperm clumping, which makes the sperm of various 
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males unevenly distributed within the queen’s spermatheca, is necessary for patriline shifting to 

occur, and has been observed in several species of Eciton (Whelden, 1963) and in Formica 

truncorum (Sundström & Boomsma, 2000), and suggests that patriline shifting can occur in many 

other species that vary the caste composition of different brood cohorts. 

 

Strong genetic caste determination 

Strong genetic effects on caste determination have been observed at least eight times in 

ants. These systems are described below (Figure 1.1). 

 

Vollenhovia emeryi 

In Vollenhovia emeryi, there are two distinct queen morphs: the S morph and the L morph, 

corresponding to colonies that produce only short-winged and long-winged queens, respectively 

(Ohkawara et al., 2006). In both morphs, new queens are almost exclusively homozygous, and are 

produced via thelytokous parthenogenesis, while workers are almost exclusively heterozygous and 

produced via sexual reproduction. Males of the S morph often contain alleles that are present in S 

workers but not in the queen, indicating that they share alleles with the queen’s mate (Ohkawara 

et al., 2006). Furthermore, in the nuclear genome, both S and L males are genetically more similar 

to L queens than to S queens, but in the mitochondrial genome, males are more similar to queens 

of their own morph (Kobayashi et al., 2008; Kobayashi et al., 2011). This evidence indicates that 

males emerge from eggs laid by the queen, but as clones of the queen’s mate (androgenesis) rather 

than haploid clones of the queen. The workers of the two morphs are not morphologically 
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Figure 1.1 Cartoon depicting the different systems of genetic caste determination. A) GCD system 

in Vollenhovia emeryi, Wasmannia auropunctata and Paratrechina longicornis. Males are 

produced via androgenesis and queens are produced via thelytokous parthenogenesis. Workers are 

produced via normal sexual reproduction. B) GCD in Cataglyphis cursor and C. hispanica. 

Workers are produced via normal sexual reproduction, and males are produced via arrhenotokous 

parthenogenesis as is normal for ants. Queens are clones of their mother queen. C) Genetic caste 

determination in Solenopsis xyloni. Colonies have multiple singly-mated queens in each colony. 

Some queens mate with S. geminata, and others with their own species. New queens are produced 

from conspecific matings and workers are produced from heterospecific matings. D) Genetic caste 

determination in Pogonomyrmex and Messor. These species have monogynous colonies, whose 

queens are multiply mated. Colony survival depends on queens mating with both interlineage and 

intralineage males. New queens are produced from intralineage matings, and workers are produced 

from interlineage matings. 

 

A B

C D



 

 17 

distinguishable, but there is clearly no gene flow between them since queens are produced via 

parthenogenesis, and any alleles transmitted to the offspring via hybridization between the lineages 

appear only in the sterile worker caste (Ohkawara et al., 2006). The similarity of S males to L 

queens in the nuclear genome is likely the result of a past hybridization event (Kobayashi et al., 

2011), although it is not clear that the separate lineages constitute different species. 

 

Wasmannia auropunctata 

In Wasmannia auropunctata, analysis of 11 microsatellite loci in samples from 34 colonies 

showed that queens were produced clonally while workers were produced via normal sexual 

reproduction. Further analysis revealed that males were also produced clonally, but not via 

arrhentokous parthenogenesis as is normal for ants (Foucaud et al., 2007; Foucaud et al., 2010; 

Fournier et al., 2005a). Pupal male genotypes were identical to the genotypes of sperm found in 

the queens spermathecae indicating that males were clones of the queen’s mate. Like in 

Vollenhovia emeryi, males are produced via androgenesis, and there is no gene flow between the 

two sexes, which form independent lineages (Foucaud et al., 2010; Fournier et al., 2005a). In 

experimental crosses, queens from clonally reproducing colonies produced haploid males almost 

exclusively via androgenesis, regardless of whether they mated with males from clonal or sexual 

populations. This indicates that androgenesis in W. auropunctata is not a male trait; rather it is a 

trait of parthenogenetic females (Rey et al., 2013). Unlike other similar cases, queen 

parthenogenesis and male androgenesis do not appear to result from historic or current 

hybridization between two distinct genetic lineages (other than those formed by the different 

sexes). Instead, there are multiple independent origins of clonality arising out of sexual 
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populations, a pattern that is consistent in distantly located parts of the species range (Foucaud et 

al., 2007). 

 

Cataglyphis cursor 

In a monogynous population of Cataglyphis cursor 97.3% of workers had alleles that were 

not present in the queen. In contrast, 96.4% of gynes produced in these colonies had only alleles 

that could be attributed to the queen. These data suggest that queens are mostly produced 

parthenogenetically while workers are mostly produced sexually. It is unlikely that queens are 

produced sexually because the probability of a male having no diagnostic alleles at several highly 

polymorphic microsatellite loci is extremely low. In contrast to other cases of genetic caste 

determination, males and queens appear to come from the same gene pool (Pearcy et al., 2004). 

 

Cataglyphis hispanica 

Colonies of Cataglyphis hispanica are monogynous and queens are usually singly mated. 

In field-collected colonies, all new gynes produced were identical to the queen at all loci that were 

genotyped indicating that they were produced clonally. As in C. cursor, the probability that the 

queen mated with a male with no diagnostic alleles is extremely low. Pedigree analysis of the 

workers revealed that all were produced sexually. All males produced in these colonies were 

haploid and carried alleles of the colony queen indicating that they were produced via 

arrhenotokous parthenogenesis. In all colonies queens and their mates belonged to different genetic 

groups, and all workers were interlineage hybrids (Leniaud et al., 2012), a pattern that holds across 

the entire range of the species (Darras et al., 2014). 
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Solenopsis 

Species of the genus Solenopsis are polygynous and their queens are singly mated. The 

ranges of two species, S. xyloni and S. geminata, overlap in central Texas (Hung & Vinson, 1977; 

Vinson, 1997). Colonies of S. geminata from sympatric populations are morphologically and 

genetically indistinguishable from colonies of the same species in areas of allopatry. In colonies 

of S. xyloni sympatric with S. geminata, all workers display some degree of intermediate 

morphology and are also genetically intermediate between the two species. Nearly all workers in 

these colonies are F1 hybrids, while nearly all queens are pure species S. xyloni (Helms Cahan & 

Vinson, 2003). This case is clearly an example of interspecific hybridization, but how it relates to 

genetic caste determination is not clear. 

 

Pogonomyrmex 

Pogonomyrmex colonies are monogynous and queens are multiply mated. P. rugosus and 

P. barbatus are two closely related species that live in the south western United States and Mexico. 

Their ranges overlap, and in some localities they are found near each other (Parker & Rissing, 

2002; Volny & Gordon, 2002). In some of these areas of sympatry, hybrid lineages have been 

identified based on deviations from Hardy-Weinberg equilibrium as well as differences in 

morphology (Julian et al., 2002; Volny & Gordon, 2002). Within two of these areas of sympatry, 

there are multiple pairs of interdependent lineages that resemble either P. rugosus or P. barbatus 

morphologically, but that are reproductively isolated from each other as well as from their parental 

species (Anderson et al., 2006; Helms Cahan & Keller, 2003; Schwander et al., 2007a). At the 

locality called Hidalgo, H1 and H2 lineages are found, and at Junction, J1 and J2 lineages are 

found. The lineage pairs at each locality are interdependent such that each cannot exist without the 
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presence of the other because foundress queens must mate with males of both lineages. Mating 

between individuals belonging to two different lineages (H1 x H2, or J1 x J2) is necessary to 

produce workers. Meanwhile intralineage matings are necessary for the production of virgin 

queens. Thus, during their nuptial flight, new queens must mate with at least one male from each 

lineage to ensure successful colony founding. There is evidence of historical gene flow indicating 

that there is a complex history of hybridization between the two parental species, but it is not clear 

that interspecific hybridization directly gave rise to the system of interdependent lineages observed 

(Helms Cahan & Keller, 2003; see also Anderson et al., 2006). 

 

Messor 

A system of genetic caste determination remarkably similar to that seen in Pogonomyrmex 

is observed in Messor barbarus. Queens of this species are multiply mated, and colonies are 

headed by a single queen. Two independent genetic lineages are observed, and queens must mate 

with males of both lineages to successfully found a colony. Interlineage matings produce workers 

while intralineage matings produce queens (Norman et al., 2016; Romiguier et al., 2017). A similar 

system is likely also occurring in two other Messor species, M. structor and M. ebeninus 

(Romiguier et al., 2017).  

 

Paratrechina longicornis 

Paratrechina longicornis uses a similar mode of reproduction to W. auropunctata and V. 

emeryi. Queens are produced clonally via thelytokous parthenogenesis, while workers are 

produced sexually. Males are produced via androgenesis i.e. they are clones of the queen’s mate. 

Although queens and males appear to form distinct genetic lineages, the origin of the unusual 
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reproductive system in this species is unclear, and it is not known if it is connected to interspecific 

or interlineage hybridization (Pearcy et al., 2011). 

 

Hybridization and genetic caste determination 

Of the eight cases of genetic caste determination described thus far, those in 

Pogonomyrmex and Solenopsis show clear evidence of hybridization between distinct species. The 

Pogonomyrmex system involves a complex history of hybridization between P. barbatus and P. 

rugosus that may have given rise to the system of interdependent lineages observed. However, 

there is also hybridization between two other Pogonomyrmex species in nearby areas but no 

evidence of strong GCD (Anderson et al., 2008b). In Solenopsis, the two species exist in a current 

hybrid zone that may ultimately be responsible for genetic caste determination. Furthermore, the 

 

 

Figure 1.2 Cartoon Venn diagram depicting the high amount of overlap between cases of genetic 

caste determination in ants and interspecific hybridization. 

Cases of hybridization Cases of GCD

Figure 1.1
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systems in Messor, Cataglyphis hispanica, Vollenhovia emeryi, and Paratrechina longicornis may 

indeed involve interspecific hybridization in the normal sense, although further research is needed 

to clarify if the involved lineages constitute true species. Only two cases, those in Wasmannia 

auropunctata and Cataglyphis cursor, show multiple independent origins of GCD from within 

otherwise normal sexually reproducing populations. However, their independent lineages, as well 

as the lineages in all strong GCD cases, may be considered distinct species in the sense that they 

are reproductively isolated from each other (Queller, 2005). It is evident that there is a connection 

between the two phenomena of hybridization and genetic caste determination although how they 

are related is not clear (Figure 1.2). 

Under polygyny or polyandry, effects of hybrid sterility can be averted by shunting hybrids 

out of the reproductive caste, so there may be selective pressures for the queen to reduce the 

metabolic cost of producing sterile daughter queens. Additionally, as outlined previously, the cost 

of keeping hybrid workers in the colony may be relatively low, and some benefits may even be 

realized if hybrids display any form of hybrid vigor. A proposed explanation for the evolution of 

strong genetic caste determination is that it is the result of hybridization between two independent 

genetic lineages. Genes that bias offspring to become queens are selected for because they increase 

the number of sexual offspring. However, workers are required for colony maintenance and brood 

care, so colony level selection acts on different loci to counteract these caste-biasing genes. Within 

a non-hybridizing population, these two competing forces counteract each other to create a stable 

evolutionary strategy. However, when two different species interbreed, the genes causing and 

counteracting queen bias are decoupled revealing the underlying genetic conflict and allowing a 

strong caste bias to rise in frequency (Anderson et al., 2008a). Another possible explanation is that 

because hybridization can have an effect on body size, growth-stunted hybrids do not reach the 
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size threshold during development required to become queens (Trible & Kronauer, 2017). Cases 

where interspecific matings result in larger hybrids would cause some to surpass this threshold and 

become queens. However, these situations would be selected against if hybrid queens have reduced 

fecundity or are completely sterile.  
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