Distal leg structures of the Aculeata (Hymenoptera):
A comparative evolutionary study of Sceliphron (Sphecidae)
and Formica (Formicidae)

Rolf Georg Beutel1 | Adrian Richter1 | Roberto A. Keller2 |
Francisco Hita Garcia3 | Yoko Matsumura4 | Evan P. Economo3 | Stanislav N. Gorb4

1Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität, Jena, Germany
2Museu Nacional de Historia Natural e da Ciência and Centre for Ecology, Evolution and Environmental Changes, Universidade de Lisboa, Lisbon, Portugal
3Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
4Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany

Correspondence
Adrian Richter, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität, Erbertstr. 1, Jena 07743, Germany.
Email: adrian.richter@uni-jena.de

Funding information
Evangelisches Studienwerk Villigst; Okinawa Institute of Science and Technology Graduate University

Abstract
The distal parts of the legs of Sceliphron caementarium (Sphecidae) and Formica rufa (Formicidae) are documented and discussed with respect to phylogenetic and functional aspects. The prolegs of Hymenoptera offer an array of evolutionary novelties, mainly linked with two functional syndromes, walking efficiently on different substrates and cleaning the body surface. The protibial-probasitarsomal cleaning device is almost always well-developed. A complex evolutionary innovation is a triple set of tarsal and pretarsal attachment devices, including tarsal plantulae, probasitarsomal spatulate setae, and an arolium with an internal spring-like arcus, a dorsal manubrium, and a ventral planta. The probasitarsal adhesive sole and a complex arolium are almost always preserved, whereas the plantulae are often missing. Sceliphron has retained most hymenopteran ground plan features of the legs, and also Formica, even though the adhesive apparatus of Formicidae shows some modifications, likely linked to ground-oriented habits of most ants. Plantulae are always absent in extant ants, and the arolium is often reduced in size, and sometimes vestigial. The arolium contains resilin in both examined species. Additionally, resilin enriched regions are also present in the antenna cleaners of both species, although they differ in which of the involved structures is more flexible, the calcar in Sceliphron and the basitarsal comb in Formica. Functionally, the hymenopteran distal leg combines (a) interlocking mechanisms (claws, spine-like setae) and (b) adhesion mechanisms (plantulae, arolium). On rough substrate, claws and spine-like setae interlock with asperities and secure a firm grip, whereas the unfolding arolium generates adhesive contact on smooth surfaces. Differences of the folded arolium of Sceliphron and Formica probably correlate with differences in the mechanism of folding/unfolding.

KEYWORDS
adhesion, antenna cleaner, arolium, proleg, tarsus
1 | INTRODUCTION

Among well-known synapomorphies of Hymenoptera like the wing coupling mechanism with hamuli or the haploid-diploid reproductive system (e.g., Beutel et al., 2014; Rasnitsyn, 1988), the prolegs offer an array of evolutionary novelties supporting the group as a clade. This character complex is mainly linked to two functional syndromes, walking efficiently on different substrates, especially plant surfaces (e.g., Beutel & Gorb, 2001), and cleaning the body surface, which is usually characterized by an exceptionally rich vestiture of different hairs and sensilla.

As shown previously (e.g., Basibuyuk & Quicke, 1995; Frantsevich & Gorb, 2002; Frantsevich & Gorb, 2004; Gladun, 2008; Gladun, Gorb, & Frantsevich, 2009; Snodgrass, 1956), structural features of the distal leg of Hymenoptera are exceptionally complex and arguably a key character system in the evolution of the megadiverse order. Distal leg structures of insects, especially adhesive devices, have attracted considerable attention from researchers over the years (see Beutel & Gorb, 2001, 2006 for an overview). These critical components of the phenotype are linked to the abilities of organisms to move, land, grab, manipulate, and interact with other organisms, especially plants. An early comparative study of insect attachment structures was presented by De Meijere (1901), and a consistent terminology was introduced by Dashman (1953). Functional aspects were investigated in numerous studies, such as, for instance, Drechsler and Federle (2006), Bullock, Drechsler, and Federle (2008), or Endlein and Federle (2015) (see also Gorb (2010) for an overview). The first comprehensive evaluation of the character evolution was presented by Beutel & Gorb (2001) (see also Beutel & Gorb, 2006, 2008). Gorb and Beutel (2001) pointed out that adhesive devices of pterygote insects and surfaces of plants experienced a remarkable coevolutionary history, which resulted in the exceptionally high diversity of angiosperm plants, and in an unparalleled diversification in insects, especially adhesive devices, have attracted considerable attention from researchers over the years (see Beutel & Gorb, 2001, 2006 for an overview). These critical components of the phenotype are linked to the abilities of organisms to move, land, grab, manipulate, and interact with other organisms, especially plants. An early comparative study of insect attachment structures was presented by De Meijere (1901), and a consistent terminology was introduced by Dashman (1953). Functional aspects were investigated in numerous studies, such as, for instance, Drechsler and Federle (2006), Bullock, Drechsler, and Federle (2008), or Endlein and Federle (2015) (see also Gorb (2010) for an overview). The first comprehensive evaluation of the character evolution was presented by Beutel & Gorb (2001) (see also Beutel & Gorb, 2006, 2008). Gorb and Beutel (2001) pointed out that adhesive devices of pterygote insects and surfaces of plants experienced a remarkable coevolutionary history, which resulted in the exceptionally high diversity of angiosperm plants, and in an unparalleled diversification in insects, especially plant surfaces (e.g., Beutel & Gorb, 2001), and cleaning the body surface, which is usually characterized by an exceptionally rich vestiture of different hairs and sensilla.

As shown previously (e.g., Basibuyuk & Quicke, 1995; Frantsevich & Gorb, 2002; Frantsevich & Gorb, 2004; Gladun, 2008; Gladun, Gorb, & Frantsevich, 2009; Snodgrass, 1956), structural features of the distal leg of Hymenoptera are exceptionally complex and arguably a key character system in the evolution of the megadiverse order. Distal leg structures of insects, especially adhesive devices, have attracted considerable attention from researchers over the years (see Beutel & Gorb, 2001, 2006 for an overview). These critical components of the phenotype are linked to the abilities of organisms to move, land, grab, manipulate, and interact with other organisms, especially plants. An early comparative study of insect attachment structures was presented by De Meijere (1901), and a consistent terminology was introduced by Dashman (1953). Functional aspects were investigated in numerous studies, such as, for instance, Drechsler and Federle (2006), Bullock, Drechsler, and Federle (2008), or Endlein and Federle (2015) (see also Gorb (2010) for an overview). The first comprehensive evaluation of the character evolution was presented by Beutel & Gorb (2001) (see also Beutel & Gorb, 2006, 2008). Gorb and Beutel (2001) pointed out that adhesive devices of pterygote insects and surfaces of plants experienced a remarkable coevolutionary history, which resulted in the exceptionally high diversity of angiosperm plants, and in an unparalleled diversification in insects, especially plant surfaces (e.g., Beutel & Gorb, 2001), and cleaning the body surface, which is usually characterized by an exceptionally rich vestiture of different hairs and sensilla.

2 | MATERIAL AND METHODS

2.1 | List of taxa examined

Xyelidae: Macroxyela ferruginea (Say), Xyela julii (Brébisson).

Pamphiliidae: Onycholyda luteicornis (Norton).

Siricidae: Urocerus gigas Linnaeus.
2.2 | Scanning electron microscopy

Samples in 70% ethanol were dehydrated in a rising ethanol series (80, 90, 96, and 100%), transferred to 100% acetone, and subsequently dried at the critical point in liquid CO2 using an Emitech K 850 Critical Point Dryer (Sample Preparation Division, Quorum Technologies Ltd., Ashford, England). Dried Samples were glued to minute needles with super glue and mounted on a rotatable specimen holder (Pohl 2010). An Emitech K 500 (Sample Preparation Division, Quorum Technologies Ltd.) was used for sputter coating with gold. Scanning electron microscopy (SEM) micrographs were taken with a Philips ESEM XL30 (Philips, Amsterdam, Netherlands) equipped with Scandum FIVE software (Olympus, Münster, Germany).

2.3 | Confocal laser scanning microscopy

To visualize autofluorescences of adhesion pads and antenna cleaners, we applied a method established by Michels and Gorb (2012) using a confocal laser scanning microscope Zeiss LSM 700 (Carl Zeiss Microscopy GmbH, Jena, Germany). Following Michels and Gorb (2012), we visualized autofluorescences of the adhesion pads and antenna cleaners using four different stable solid lasers with wavelengths of 405, 488, 555, and 639 nm as excitation wavelengths and a band-pass emission filter, transmitting light with wavelengths 420–480 nm, and long-pass emission filters to detect selective emitted auto-fluorescence. Dried Samples were glued to minute needles with super glue and mounted on a rotatable specimen holder. The confocal laser scanning microscopy (CLSM) based method was originally described based on specimens being freshly frozen and stored at −70°C (Michels & Gorb, 2012). However, for this study, mainly specimens preserved in 70% ethanol were available. Therefore, we tested if images would differ between specimens preserved freshly or in 70% ethanol using Messor sp. All 70% ethanol preserved specimens were submerged in distilled water at least for one night to hydrate specimens before the CLSM analyses. Then, they were transferred to and rinsed in glycerin (≥99.5%, free of water, Carl Roth GmbH & Co., KG, Karlsruhe, Germany) and then mounted in glycerin droplets on glass slides. Depending on the size of specimens, we used either an objective lens ×10 (Zeiss Plan-Apochromat, numerical aperture: 0.45) or ×20 (Zeiss Plan-Apochromat, numerical aperture: 0.8). All images were taken separately, and we optimized CLSM settings for each specimen. Following Michels and Gorb (2012), we interpreted the results as follows: red-colored areas are relatively stiff, green-colored ones are tough and flexible, and blue-colored ones are resilin enriched.

2.4 | Microtome section series

Distal parts of legs (tarsus and pretarsus) were removed with Dumont forceps. Dehydration of the samples was performed as described for drying at the critical point, followed by embedding in Araldite CY 212 (Agar Scientific, Stansted/Essex, England). The samples were sectioned (0.5 μm thickness) with a microtome HM 360 (Microm, Walldorf, Germany) equipped with a diamond knife. The sections were stained with toluidine blue and pyronine G (Waldeck GmbH & Co. KG/Chroma Division, Münster, Germany) and examined with an Axioscope (Carl Zeiss AG, Oberkochen, Germany).

2.5 | Microtomography, 3D reconstruction, and material segmentation

A fore leg of Sceliphron previously prepared for SEM imaging was inserted into a fine pipette tip which was attached to a microtomography (μCT)-sample holder. The sample was μCT-scanned using a Bruker SkyScan 2211 μCT scanner (Bruker, Belgium) at the Max-Planck-Institut für Menschheitsgeschichte Jena, Germany, equipped with a high-resolution (4,000 × 2,600 pixel) X-ray sensitive CCD camera. A beam strength of 40 kV and 120 μA was employed. Exposure time was 850 ms and an image pixel size of 1.77 μm was chosen in a 360° scan with 0.2° rotation steps. Tomographic reconstruction was done using NRecon (Version: 1.7.3.1). The fore leg of F. rufa was similarly inserted into a very fine pipette tip and then attached to a μCT sample holder. The μCT scanner used was a Zeiss Xradia 510 Versa 3D X-ray microscope operated with the Zeiss Scout-and-Scan Control System software (version 11.1.6411.17883) at the Okinawa Institute of Science and Technology Graduate University, Japan. The scanning parameters chosen consisted of a 40 kV (75 μA)/3 W beam strength with 6 s exposure time under a × 4 magnification, which resulted in a voxel size of 1.81 μm. 3D reconstructions of the resulting scan projection data were done with the Zeiss Scout-and-Scan Control System Reconstructor (version 11.1.6411.17883) and saved in DICOM file format. Post-processing of DICOM raw data was done with Amira 6.0 software (Visage Imaging GmbH, Berlin, Germany) in order to segment individual structures into discrete materials. The segmented materials were then exported with the plugin script “multiExport” (Engelkes, Friedrich, Hammel, & Haas, 2018) in Amira 6.1 as Tiff image stacks. VG-Studio Max 2.0 (Volume Graphics GmbH, Heidelberg, Germany) was used to create volume renders out of the Tiff image series.

2.6 | Image processing

All images were edited using Adobe Photoshop CS6 (Adobe Systems Incorporated, San Jose, CA) and arranged into figure plates. On SEM
images and images from section series, tonal correction was performed. The selective sharpener (30% strength) was used on all images. Adobe Illustrator CS6 (Adobe Systems Incorporated) was used to label the figure plates.

2.7 | Terminology

The terminology of the leg and its adhesive devices is based on Basibuyuk and Quicke (1995) and Beutel and Gorb (2001).

3 | RESULTS

3.1 | Hymenoptera

This section is based on observations made with the examined material, but also on earlier studies (e.g., Basibuyuk & Quicke, 1995; Beutel & Gorb, 2001, 2006; Rasnitsyn, 1988; Schulmeister, 2003; Snodgrass, 1956; Vilhelmsen et al., 2010).

The length of the legs increases from anterior to posterior in most groups. A dense vestiture of fine setae is almost always present. The

![Image of figure plates](image-url)

FIGURE 1 S. caementarium (Sphecidae) (a–d) and F. rufa (Formicidae) (e–h), scanning electron micrographs of the foreleg tarsi of females (worker caste in case of Formica). (a,h) Overview of protarsus in ventral view, insert in (a) shows tarsal plantula. (b,e) Ventral view of pretarsal structures. (c,f) Lateral view on pretarsal structures. (d,g) Dorsal view on pretarsal structures. ar, arolium; btc, basitarsal comb; ca, calcar; cl, claw; ma, manubrium; pl, planta; pt, plantula; Tar5, tarsomere 5; un, unguiltractor plate.
tarsus is usually composed of five tarsomeres. Four- or three-segmented tarsi occur only in few groups, probably linked with miniaturization (e.g., Chalcidoidea part., Platygasteridae, Trichogrammatidae; Naumann, 1991). The forelegs bear the elements of the antenna cleaning device. The protibial calcar is present in the ground plan of Hymenoptera, and the probasitarsal notch and comb in Orussidae and Aculeata (Vilhelmsen et al., 2010). Tarsal plantulae are usually present, either fixed or articulated (Beutel & Gorb, 2006; Schulmeister, 2003). The basitarsomere bears a dense sole of tenent setae (sensu Dashman (1953)), likely an autapomorphy of the order. The arolium is well developed in almost all groups. It is supported by the arcus, a spring-like element and unique among Hexapoda. The arolium is supported by the plate-like planta on the ventral side, which is adjacent with the unguitractor plate. A manubrium is present dorsally, apically inserted on tarsomere 5. The claws are often pubescent proximally and usually bear a mesal tooth and several setae.

3.2 | **Sceliphron** (Sphecidae)

The five-segmented (pentameric) tarsi of the three legs are similar in their general organization, but differ distinctly in size, with a length ratio of 1:1.5:2 from anterior to posterior. The prolegs also differ by the presence of the antenna cleaning organ, with a specialized apical tibial spur and a shallow notch of the probasitarsomere (Figures 1a and 2a,b). The distal half of the metafemur is black; the other parts of the hind legs are mostly yellowish to light brown. The apical parts of the mesotarsomere and metatarsomere are almost black. The two distal tarsomeres of the middle and hind legs are also more strongly pigmented, and also the three distal protarsomeres. All three pairs of legs are pubescent, with the surface almost entirely covered with a dense, regularly arranged vestiture of fine short setae, varying in length between about 0.02 and 0.03 mm and also slightly in thickness; the individual hairs are mostly oriented toward the apex of the leg.

Setae and spine-like strengthened setae of different length and different patterns of arrangement are present on different regions of the tarsomeres, especially concentrated on the apical portions, but largely missing on the dorsal surface. With about 1.7 mm, the probasitarsomere is by far the longest segment of the tarsus of the foreleg (Figure 1a). It is about 0.3 mm wide at its base. The basalmost portion following the articulation with the tibia is distinctly curved. A concavity of the proximoventral part of the probasitarsomere (Keller, 2011: probasitarsal notch) contains the basitarsal comb of the strigil (Basibuyuk & Quicke, 1995; btc, Figures 2a,b and 3c), about 0.3 mm long and formed by very densely and regularly arranged stiff microtrichia (ca. 0.05 mm), situated on relatively flexible cuticle (Figure 3c) close to the posterior margin of the tarsal segment. Some of the microtrichia show resilin (blue) signal on CLSM images.
FIGURE 3 S. caementarium (Sphecidae) (a,c) and F. rufa (Formicidae) (b,d), confocal laser scanning microscopic images of tarsomere 5 of a female (worker in case of Formica) foreleg, both in ventral view (a,b) and confocal laser scanning microscopy (CLSM) images of the antenna cleaner in posterior view (c,d). ar, arolium; aux, auxiliary sclerites; bt, basitarsus; btc, basitarsal comb; bts, basitarsal spatulate setae; ca, calcar; cac, comb of the calcar; cl, claw; pl, planta; pt, plantula; Tar5, tarsomere 5; tib, tibia; un, ungutractor plate; ve, velum of the calcar
The apical protarsomere 5 is almost as long as 3 and 4 combined (ca. 0.7 mm). It is also strongly narrowed basally but distinctly widening distally, especially in the proximal 1/3. The ventral surface bears two longer and several short setae. The pubescence on the dorsal side of the tarsomere is regular, without interspersed longer hairs except for two pairs of long setae on the apical region, the inner ones about 0.25 mm and the outer ones about 0.3 mm long. The apical margin is oblique with a longer dorsal end (Figure 3d). The dorsal side is bilobed, with two rounded lateral lobes separated by a median emargination, which bears the manubrium. The manubrium appears as a small semicircular plate in dorsal view (ma, Figures 1d and 4b,e), about 0.1 mm wide, with the normal fine pubescence on its dorsal surface, and slightly longer hairs close to the apical margin. A pair of long setae (ca. 0.35 mm) with a longitudinally ruffled surface is inserted distally on this plate. A tapering, slightly sinuous stalk of the plate reaches between the fold of the arolium, resulting in a club-shaped appearance of the manubrium (ma, Figures 4c,d and 5c).

The well-sclerotized unguitractor plate, an almost quadrangular sclerite with rounded lateral edges, inserts in an emargination of the ventral apical margin of the tarsomere (Figure 3a). Its surface bears the same fine pubescence as the rest of the tarsus and its lateral proximal surface is covered with scales (Figures 1b and 3a). The thick and heavily sclerotized unguitractor plate is tapering distally (Figures 3c, 4c, and 5a). It is flanked by a pair of blade-like setae (ca. 0.2 mm long) with a low median longitudinal ridge. The unguitractor tendon inserts mesally on the proximal margin of the plate (Figure 4c), which bears a hook-shaped swelling distally on its dorsal surface (Figures 4c and 5c). A distinct pad-like planta (pl, Figures 1b, 3a, 4, and 5b,c) is connected with the dorsal hook by a membrane, with the distal edge of the unguitractor plate overlapping with the connecting area (Figures 4c and 5c). The planta is slightly narrower at the base than at its distal margin. It is slightly concave distally and the lateral edges more strongly rounded. It bears a dense vestiture of short, slightly curved setae. A pair of small auxiliary sclerites is visible laterodistad the unguitractor plate (Figures 3a and 4a,d,f). The well-developed, curved claws (cl, Figures 1a–c, 3a, and 4) bear a distinct slender tooth with a rounded apex approximately at mid-length. A short seta is inserted proximad this projection and a row of extremely short spines distad of it. The proximal part except for the ventral side bears the regular fine pubescence. A seta of about 0.1 mm length is inserted proximally on the glabrous distal half of the claws.

The pretarsal attachment apparatus is well developed and complex. The arolium (ar, Figures 1a–d, 3a, and 5a–c) is dorsally adjacent with the manubrium and resilin enriched. It is formed by two lobes separated by a deep median cleft. They are slightly broader than the manubrium at their base and distinctly widening toward the slightly convex apical margin. The surface of the highly flexible cuticle bears a very dense pattern of transverse folds resembling a fingerprint pattern (Figure 1d). The paired structures are rolled laterally in the resting position (Figure 1c). The surface structure of the apical margin displays a pattern of extremely small papillae, mostly of them with a minute cuticular thorn. The unsclerotized cuticle below this region of

(Continued...
the arolium is smooth and subdivided by several folds (Figure 1c). A
large cushion-like membranous part of the arolium between this
smooth area and the distal edge of the planta bears a dense vestiture
of short, curved microtrichia (ca. 7 μm; Figure 1b,c). The clasp-shaped
arcus is a sclerotized internal flat band (ac, Figures 3a–c and 4d–f). It
is located along the distal margin of the planta, running dorsad along
the lateral sides of the ventral half of the arolium, not quite reaching
its dorsal margin (Figure 4d).

FIGURE 4 *S. caementarium* (Sphecidae), volume render images of tarsomere 5 of a female foreleg, (a) Protarsomere 5 ventral view.
(b) Protarsomere 5 dorsal view. (c) Protarsomere 5 view of a sagittal section. (d) Lateral view of pretarsal structures with transparent arolium,
claws, and planta. (e) Dorsal view of pretarsal structures with transparent arolium. (f) Ventral view of pretarsal structures with transparent arolium
and planta. ar, arolium (turquoise); ac, arcus (green-brown); aux, auxiliary sclerites (yellow); arg, arolium gland (purple); cl, claw (brown); ma,
manubrium (dark yellow); pl, planta (red); pt, plantula (gray); Tar5, tarsomere 5 (gray); un, unguintractor plate (blue); unt, unguintractor tendon (green)
3.3 | *F. rufa* (Formicidae, Formicinae)

The three slender legs differ in details of their armature and length. The length ratio of the tarsi from anterior to posterior is 2.5:3:4. The forelegs differ by the distinct enlargement of the coxa and the presence of a well-developed antenna cleaner (Figures 1h and 2c,d). The middle and hind legs are similar in their general structure and setation pattern, even though the latter are distinctly longer. The coloration is

Figure 5
S. caementarium (Sphecidae) (a–c) and *F. rufa* (Formicidae) (d–f), histological section microphotographies of tarsomere 5 of a female (worker in case of *Formica*) foreleg. *Sceliphron* sections are slightly longitudinally diagonal, *Formica* sections are longitudinal. (a–c) From lateral at the level of the basal claw to sagittal. (d–f) From lateral at the very base of the claw to sagittal. ar, arrolium; ac, arcus; aux, auxiliary sclerites; arg, arrolium gland; cl, claw; ma, manubrium; pl, planta; Tar5, tarsomere 5; un, unguictractor plate; unt, unguictractor tendon.
brownish and uniform. Almost the entire surface of the legs is covered with a pubescence of fine setae of about 0.025 mm length. Setae and spine-like setae of different length and shape are concentrated on the apical parts of the tarsomeres, and also inserted along the anterior and posterior edges and on the ventral side, but largely missing on the dorsal surface.

With a length of about 1.1 mm, the probasitarsomere is more than 1.5 times as long as the remaining segments combined. The basal part following the articulation with the tibia is distinctly curved. The basitarsal comb (btc, Figures 1h, 2c,d, and 3d), a slightly oblique, straight and dense row of stiff microtrichia (ca. 0.02 mm), is located in a shallow ventral concavity (ca. 0.4 mm long) on the proximal third of the segment. A narrow glabrous field is present between the comb and the posterior edge of the tarsomere (Figures 2d and 3d). The posterior edge bears a subregular row of strong setae (0.1–0.12 mm), whereas only few thinner setae are inserted on the anterior side. The anteroventral side of the tarsomere is densely covered with tenent hairs (Basibuyuk & Quicke, 1995: paddle-shaped setae) of about 0.1 mm length, each of them with a slightly extended spatulate apical part (Figures 1h and 2c). Several strong setae are present at the anterior and posterior apex (ca. 0.15 mm), the former less stout than the latter. An additional pair of setae is inserted subapically on the dorsal side. The apex of the tarsomere is truncated. A tarsal plantula is lacking like on the following tarsomeres.

The calcar (ca, Figures 2c,d and 3d) is inserted in an apical tibial notch like in Scoliphron, but with a much smaller and homogenously tough membranous pad (Figure 3d). The posterior spur is absent. The calcar is 0.56 mm long, straight in ventral view but sinuate viewed from lateral, and has a single pointed apex. It bears a straight, dense comb of tough and flexible microtrichia of about 0.03 mm length, adjacent to a narrow area of smooth cuticle, but without a transparent lamellum. The entire surface of the calcar bears a regular pubescence of short and fine microtrichia. A ventral row of teeth is missing.

Protarsomere 2 is about one-fourth as long as segment 1 (ca. 0.27 mm). The basal part articulated with the apex of the probasitarsomere is shaped like a narrow peduncle. The segment is moderately widening toward the apex, which is slightly emarginated on the dorsal side. The fine vestiture of the dorsal and ventral surface is similar to that of the dorsal side of tarsomere 1. Several pairs of spine-like setae insert between the fine setae on the ventral surface. The apical armature of spine-like setae is similar to that of tarsomere 1.

Protarsomere 3 is about 0.16 mm long. It is also articulated with a short peduncle and distinctly widening toward the apex. The vestiture and pattern of stronger setae is similar to that of the preceding segment. The apex is distinctly emarginated. Two pairs of strong and slightly flattened spine-like setae with an indistinct pattern of longitudinal ripples insert at the slightly extended anterior and posterior apices of the tarsomere, and an additional pair between them on the ventral side. Additionally, two groups of spine-like setae are present on the ventral surface, four closer to the anterior edge and three closer to the posterior margin.

Protarsomere 4 is again shorter (ca. 0.1 mm) than 3 and widening strongly toward the distinctly extended anterior and posterior apical edges, which are separated by a distinct emargination. The basal peduncle is similar to that of tarsomeres 2 and 3. The vestiture of fine and spine-like setae is similar to the pattern on the preceding segment.

Protarsomere 5 is about twice as long as Segment 4, and similar in shape to tarsomere 2. The fine vestiture is similar to that of the preceding segments. The stronger setae at the apex and ventral surface are longer and thinner than those of the preceding tarsomeres. The dorsal apical margin displays rounded apical lobes separated by a median emargination (Figure 1g). A pair of long setae inserts close to the distal edge. The small rounded proximal end of the manubrium with a glabrous dorsal surface inserts in the emargination (Figure 1g). A pair of long setae (ca. 0.1 mm) inserts on the distal surface of the proximal manubrium (Figure 1g). The manubrium reaches deeply into the arolium (ma, Figures 1g, 5f, and 6c,d).

The well-sclerotized unguitractor plate (un, Figures 1e,h, 3b, 5d–f, and 6c) is rectangular with rounded corners, with most of the surface covered by a scaly pattern (Figure 3b). Relatively short and thin setae are distributed over the surface of the sclerite, mostly on the smooth distal part. A transverse line on the ventral side of tarsomere 5, shortly proximal the unguitractor plate (visible on CLSM images, Figure 3b), represents the inward-inflected distal margin of tarsomere 5 (Figure 5f). The planta is distally adjacent with the unguitractor plate (pl, Figures 1e,f,h, 3b, 5e,f, and 6a,c). A pair of setae of ca. 0.08 mm is inserted laterally on the base. Additional shorter setae are distributed over the surface of the sclerite. Auxiliary sclerites are not recognizable. The well-developed claws (cl, Figures 1e–h, 3b, and 5d) bear a dense pattern of short microtrichia on their basal part and an array of setae of different thickness and length, the strongest one inserted on the mesal edge directly distal the field of microtrichia. A tooth is not present. A distinct groove is present mesally on the distal half (Figure 1f).

The apically bilobed resilin-containing arolium (ar, Figures 1e–h, 3b, 5e, and 6a–c) is distinctly developed, but appears small compared to the claws. It is about 0.07 mm long and 0.05 mm wide near its base. On the dorsal surface and at the apical margin it bears a dense pattern of papillae with pointed spines (Figure 1g). The surface on the ventral side is smooth (Figure 1e). The arcus is not recognizable externally, but it is visible on microtome section series and μ-CT data as a thin, sclerotized structure similar to that of Scoliphron but shorter and not bent toward tarsomere 5 (ac. Figures 5e,f and 6c–e).

4 | CHARACTERS

1 Fine pubescence of legs: (0) present; (1) absent. A dense pubescence of short setae is present in Sphecidae and Formicidae, and also in other groups of Hymenoptera (e.g., Schulmeister, 2003, figure 1b,c). It is less regular and dense in Xyelidae (Schulmeister, 2003, figure 1a; Basibuyuk & Quicke, 1995). It is conceivable that this is a plesiomorphic feature preserved in this family. However, the character state polarity assessment is difficult in this case. The condition varies strongly in possible
outgroups, such as for instance in Paraneoptera (Friedemann, Spangenberg, Yoshizawa, & Beutel, 2014, figures 1 and 3–5).

2 Distal tibial notch: (0) absent; (1) present. The anterior spur (calcar) is inserted in a distinct notch of the distal tibia in all hymenopteran species examined (see also Basibuyuk & Quicke, 1995, figures 1–4). This is likely a ground plan apomorphy of Hymenoptera.

3 Posterior protibial spur: (0) present; (1) absent (Basibuyuk & Quicke, 1995). Present in almost all symphytan groups and in the ground plan of Hymenoptera. Absent in Siricidae and Anaxyelidae, and almost generally missing in Apocrita including Sphecidae and Formicidae. Present in Megaspilidae and Ceraphronidae, and polymorphic in few families (Basibuyuk & Quicke, 1995).

4 Shape of anterior spur: (0) straight; (1) sinuate. The calcar is sinuate in Sceliphron and the ants examined, and also in most other groups of Hymenoptera. A curved anterior protibial spur is a ground plan apomorphy of Hymenoptera according to Basibuyuk and Quicke (1995) (see also Vilhelmsen (2001)).

5 Apex of anterior spur: (0) simple; (1) bifurcated. A bifurcated apex of the calcar occurs in Xyelidae and several other symphytan groups such as Pamphilidae, Tenthredinidae, and Orussidae, and also in apocritan groups like Evanidae, Aulaciidae, Stephanidae, and others (Basibuyuk & Quicke, 1995, figures 1–4). Consequently, this is probably a ground plan apomorphy of Hymenoptera. The apex is simple in the groups we examined.

FIGURE 6 F. rufa (Formicidae), volume render images of tarsomere 5 of a female foreleg. (a) Protarsomere 5 diagonal ventral view. (b) Protarsomere 5 diagonal dorsal view. (c) Protarsomere 5 view of a sagittal section. (d) Lateral view of pretarsal structures with transparent arolium, claws, and planta. (e) Diagonal dorsal view of pretarsal structures with transparent arolium. (f) Diagonal ventral view of pretarsal structures with transparent arolium and planta. ar, arolium (turquoise); ac, arcus (green-brown); arg, arolium gland (purple); cl, claw (brown); ma, manubrium (dark yellow); pl, planta (red); Tar5, tarsomere 5 (gray); un, unguictractor plate (blue); unt, unguictractor tendon (green).
6 Inner comb of calcar: (0) absent; (1) present. The inner comb of the calcar is present in all the species examined. This is likely an autapomorphy of Hymenoptera.

7 Transparent lamellum of calcar (velum): (0) present; (1) absent. The velum is present in Xyelidae and other basal hymenopteran lineages (Basibuyuk & Quicke, 1995), and also in Sceliphron and in other apocritan groups. The lamellum is probably part of the ground plan of Hymenoptera, and probably also of Formicidae. However, it has been reduced many times independently in ants, and it is also absent in Formica (Basibuyuk & Quicke, 1995; Keller, 2011).

8 External row of tooth-like setae on calcar: (0) absent; (1) present. Present in Sceliphron. This is apparently a derived condition, but the origin within Apoidea is uncertain. The row is absent in basal groups of Hymenoptera (Basibuyuk & Quicke, 1995) and in the ants examined.

9 Sole of tenent setae on probasitarsomere: (0) absent; (1) present. A dense sole of tenent setae with a widened spatulate part (Basibuyuk & Quicke, 1995; paddle-shaped setae) is present in Sceliphron (Basibuyuk & Quicke, 1995; Keller, 2011). In other apocritan groups, the sole is typically absent. It is present in Xyelidae and other basal lineages of Hymenoptera (Basibuyuk & Quicke, 1995) and in Formicidae, but well-developed in Sceliphron and members of other hymenopteran lineages, but absent in Formica and Cataglyphis and other ant species examined. It was noted in Keller (2011) that the claws can vary strongly throughout the ant tree of life, for instance with a strongly developed tooth like in Harpegnathos saltator (T.C. Jerdon), with a pectinate mesal edge like in Leptogenys Roger sp., or with spiniform basal projections like in Bothroponera pachyderma Emery. Toothed claws also occur in fossil ant species (e.g., Barden, 2017).

10 Tarsal plantulae: (0) present; (1) absent. Tarsal plantulae are present in the ground plan of Hymenoptera (Rasnitsyn, 1988). They are absent in most groups of Apocrita including extant Formicidae, but well-developed in Sceliphron.

11 Connection of plantulae with ventral tarsal surface: (0) integrated into ventral surface of tarsomeres; (1) distally articulated with tarsomeres. The tarsal plantulae are firmly integrated in the ventral sclerotized surface of tarsomeres 1–4 in Xyelidae and Pamphiliidae (Schulmeister, 2003). They are articulated at the distal edge of the tarsomeres 1–4 in Sceliphron, and also in other groups of Hymenoptera (Schulmeister, 2003).

12 Number of tarsal plantulae on tarsomeres: (0) single plantula; (1) double plantula. Integrated double plantulae occur in Pamphiliidae and articulated double plantulae in Xiphydriidae (Schulmeister, 2003). The presence of double plantulae is apparently a derived condition that evolved independently in the groups concerned.

13 Lateral lobate projections of protorsomeres 2–4: (0) absent or very indistinct; (1) distinct. Distinct lateral lobate projections are present on protorsomeres of Formica and Cataglyphis, especially on tarsomere 4, and also in Vespula (Frantsevich & Gorb, 2004). They are absent in Xyelidae and other basal lineages (e.g., Schulmeister, 2003, figure 1), and indistinct in Sceliphron and Myrmecia (Liu, Richter, Stoessel, & Beutel, 2019, figure 5a). Apparently, this condition varies strongly in Hymenoptera and also in Formicidae (Keller, 2011).

14 Strengthened ventral spine-like setae on distal region of protarsomeres 2–4: (0) absent; (1) present. An array of slightly curved spine-like setae is present on the distal part of the ventral side of protarsomeres 2–4 of Formica, especially on the lobate projections (see also Keller, 2011, figures 26a and 27c,d; Troya, 2012, figure 7b). Long and slender spine-like setae are present in Cataglyphis, whereas they are short and straight in Myrmecia (Liu et al., 2019, figure 5a). Curved and strengthened setae are missing in basal lineages of Hymenoptera (Schulmeister, 2003, figure 1). Blade-like setae are distally inserted on all tarsomeres in Sceliphron, and groups of short curved spine-like setae in Vespula (Frantsevich & Gorb, 2004, figure 4). More data are required for a phylogenetic assessment of this character, which is apparently variable in Hymenoptera and Formicidae (Keller, 2011).

15 Tooth of claw: (0) present; (1) absent. A tooth is present in Sceliphron and members of other hymenopteran lineages, but absent in Formica and Cataglyphis and other ant species examined. It was noted in Keller (2011) that the claws can vary strongly throughout the ant tree of life, for instance with a strongly developed tooth like in Harpegnathos saltator (T.C. Jerdon), with a pectinate mesal edge like in Leptogenys Roger sp., or with spiniform basal projections like in Bothroponera pachyderma Emery. Toothed claws also occur in fossil ant species (e.g., Barden, 2017).

16 Proximal pubescence of claws: (0) present; (1) absent. A proximal pubescent part of the claws was present in all species of Hymenoptera included in our sampling. It is missing in species of Chalcidoidea examined by Gladun & Gumovsky (2006: figs 7-9).

17 Manubrium: (0) absent; (1) present. The manubrium is generally present in Hymenoptera (e.g., Gladun, 2008; Snodgrass, 1956) and likely a ground plan apomorphy of the order. It is usually elliptical or quadrangular with rounded edges, but protruding distad in the ant Xymmer muticus (=Amblyopone mutica [Santschi]) (Keller, 2011).

18 Planta: (0) absent; (1) present. A planta is present in all species examined. An arrangement with the unguitractor followed by this plate-like structure supporting the arolium on the ventral side is likely a synapomorphy of Hymenoptera (e.g., Gladun, 2008).

19 Auxiliary sclerites (auxillae): (0) absent; (1) present. Auxiliary sclerites (Gladun, 2008) are almost generally present in the symphytan families but missing in Orussidae (Gladun, 2008). The presence is likely a ground plan apomorphy of Hymenoptera. The auxiliary sclerites are also commonly found in Apocrita (e.g., Gladun & Gumovsky, 2006, figure 1b), but are missing in Chalcidoidea and vestigial or absent in Formicidae.

20 Arolium: (0) present; (1) absent or vestigial. An arolium is generally present in Hymenoptera and likely a plesiomorphic ground plan feature of the order. Among Holometabola it is present in Neuroptera, Trichoptera (partim), Lepidoptera (most groups) and Mecoptera (excl. Boreidae and Nothiothamnidae; Beutel & Gorb, 2001). The arolium is well-developed in stem group ants (e.g., Barden & Grimaldi, 2012) and certainly belongs to the ground plan of the family. However, it is vestigial or absent in many
species in various groups, and the presence or absence of the arolium on the forelegs is not necessarily linked to its presence on the middle and hind legs (Keller, 2011).

21 Size of arolium: (0) about half as long as claws; (1) distinctly less than half as long as claws. The arolium of most hymenopteran groups is at least half as long as the claws or almost as long (e.g., Frantsevich & Gorb, 2002; Gladun, 2008, figures 1–3). It is distinctly reduced in size even in ant groups where it is distinctly developed.

22 Arcus: (0) absent; (1) present. The arcus is present in the species examined. It is usually difficult to identify in ants with preserved arolia (see char. 20), but distinctly developed in Formica (Figure 6c,d,f). The structure is very likely a ground plan apomorphy of Hymenoptera. It is reduced in females of Siricidae (Gladun, 2008) and very likely missing in the ants with vestigial arolia. It is unclear at present whether the unfolding mechanism described by Snodgrass (1956) and Frantsevich and Gorb (2002) is retained in the ground plan of Formicidae. A laterally folded (or rolled) resting condition (e.g., Sceliphron) was not observed in any ant species of our sampling.

5 | DISCUSSION

5.1 | Phylogenetic interpretations

Hymenoptera differ from all other groups of hemimetabolous or holometabolous insects (see Beutel & Gorb, 2001, 2006; Gorb & Beutel, 2001) by a triple set of tarsal and pretarsal attachment structures: tarsal plantulae (Schulmeister, 2003), spatulate (or paddle-shaped) setae on the ventral side of the probasitarsomere (Basibuyuk & Quicke, 1995), and a well-developed arolium with an arcus inside and a pretarsal planta (e.g., Gladun, 2008) and very likely missing in the ants with vestigial arolia. It is unclear at present whether the unfolding mechanism described by Snodgrass (1956) and Frantsevich and Gorb (2002) is retained in the ground plan of Formicidae. A laterally folded (or rolled) resting condition (e.g., Sceliphron) was not observed in any ant species of our sampling.

The presence of paddle-shaped (or spatulate) tenent setae on the probasitarsomere is likely an autapomorphy of the order. Hairy adhesive soles also occur in the orders of Neuroptera (in Megaloptera and Raphidioptera) and Coleopterida (in Stylopidia [Strepsiptera] and many groups of Coleoptera; e.g., Beutel & Gorb, 2001; Pohl & Beutel, 2004). However, they are likely not part of the ground plan of both large lineages and are not restricted to the probasitarsomere as it is the case in Hymenoptera.

A curved or sinuate tibial calcar, in most groups interacting with the strigil of the probasitarsomere as cleaning device, is a derived feature preserved throughout Hymenoptera. A transparent velum is likely present in the ground plan, but occasionally reduced, for instance in Formica and various other Formicidae. The calcar is likely bifurcated at the apex in the ground plan, but only a single apex is present in most groups, probably a transformation that took place several times among symphytan groups and in Apocrita. The apical tibial notch, the insertion site of the calcar, is probably an additional apomorphy of Hymenoptera, whereas the ventral concavity or notch of the probasitarsomere containing the strigil is likely a synapomorphy of Orussidae and Apocrita (Vilhelmsen et al., 2010).

Xyelidae differ distinctly in their leg structures from other groups of Hymenoptera. Whereas the surface of all three pairs of legs usually bears a very dense vestiture of fine setae, this pattern is less dense in this family, where glabrous areas of the cuticle display a reticulate microstructure (Basibuyuk & Quicke, 1995, figure 1). This is arguably a ground plan condition of Hymenoptera, even though secondary modification of the fine setation in Xyelidae cannot be excluded. Another presumptive plesiomorphy found in Xyelidae, and also in Pamphiliidae, is the lacking articulation of the plantulae and their proximal position. A feature of Xyelidae different form all other groups is the short single row of relatively large paddle-shaped setae on the probasitarsomere. The polarity of this character is ambivalent like in the case of the fine setation of the legs. The condition found in Xyelidae could be a preserved plesiomorphy or an autapomorphy of the family. In the former case, a dense pattern of tenent setae would be a potential apomorphy of Hymenoptera excl. Xyelidae (e.g., Beutel & Vilhelmsen, 2007; Vilhelmsen, 1997). The alternative, secondary simplification conforms with a placement of Xyelidae as second branch (after Pamphiloidea) in monophyletic Eusymphyta, as suggested in a recent transcriptomic study (Peters et al., 2017; but see Branstetter, Danforth, et al., 2017). In addition to a secondarily shortened simple row of paddle-shaped tenent hairs in Xyelidae, this phylogenetic concept implies the secondary loss of the ability of males of this family to restore diploidy in their muscles (Peters et al., 2017), independent gain of articulated tarsal plantulae in groups assigned to Eusymphyta, and also independent losses of mandibular molae and epipharyngeal brushes (Beutel & Vilhelmsen, 2007). Moreover, it implies homoplas in the case of several features suggested by Vilhelmsen (2001) for Hymenoptera excl. Xyelidae: well-developed cervical apodemes, mesothoracic postspiracular sclerites, the absence of the metapleural-S2 muscles, the presence of only one branch in Rs, and possibly the adventitious pupae (Hinton, 1971).

Formicidae have retained most of the typical hymenopteran equipment of the legs, and considering the ground plan of the family differ scarcely from related groups. It appears likely that the distal elements of ants are primarily adapted to the ground-oriented lifestyle (Lucky, Trautwein, Guenard, Weiser, & Dunn, 2013; Nelsen, Ree,
Moreau, 2018) of most ants, and an increased necessity to clean the body surface due to their eusocial nature that requires intensive interaction among individuals. However, it has to be noted that reproductive males and females fly and land on various surfaces in a "wasp-like" manner. This could explain why ant legs are not strongly modified compared to the hymenopteran ground plan.

A vague characteristic at best is the tendency to elongate the legs in relation to the body size. This character varies enormously within Formicidae, and also in other hymenopteran groups. Moreover, short legs are characteristic for soil dwelling ants and species adapted to burrow in sticks or branches, and elongated legs occur in different apocritan groups, for instance in the chrysoidid Dryinidae or the vespid Pompilidae (Grimaldi & Engel, 2005). As cleaning the body surface and especially sensilla on the antennae and other parts is apparently important for these eusocial insects, the cleaning apparatus of the protibia and probasitarsus is fully developed, except for some minor modifications like the absence of the velum, which is variably lost at the subfamily level, in addition to the genus level. A dense brush on the calcar and in the probasitarsomeral notch are probably generally present in Formicidae, and slightly less complex cleaning devices also occur on the middle and hind legs (Liu et al., 2019; Myrmecia).

In contrast to the cleaning apparatus, the complex of adhesive structures of ants shows some distinct modifications, tentatively suggesting ground oriented habits in the ground plan of Formicidae. The sole of tenent setae of the probasitarsome is likely generally present. In contrast to this, plantulae are always absent in extant ants, a feature also found in most other groups of Aculeata, but not in Sphecidae. The arolium is present in the ground plan of crown group Formicidae, but appears distinctly smaller than in related groups, like for instance Sphecidae or Vespidae (Frantsevich & Gorb, 2002). It is vestigial in Ectatomma tuberculatum and Odontomachus hastatus (Keller, 2011; Troya, 2012), but distinct even though small in relation to the claws in other groups, and distinct in extinct groups (e.g., Barden & Grimaldi, 2012). The manubrium and planta are well-developed in the ant species examined.

A detailed assessment of the distal leg structures across the ant phylogeny to reconstruct the evolution of this character system within Formicidae is currently not available. Whether the unfolding mechanism of the arolium described in detail for species of Vespidae by Frantsevich and Gorb (2002) is present in the ground plan of Formicidae is still unclear. The presence of curved spine-like setae on the distal part of the ventral sides of the tarsomeres, especially on the lobate projections, likely plays a role in improved locomotion on irregular surfaces, such as soil or strongly sculptured plant surfaces (Frantsevich and Gorb, 2002, 2004). This character varies strongly within Formicidae, even including different pairs of legs (Keller, 2011).

5.2 Functional aspects

In this section, we focus on two different functional aspects of the distal hymenopteran leg: (a) antennal cleaning organ and (b) attachment structures. Our CLSM study provides some insights about material compositions in these structural elements, which might give us further information on local physical properties of the cuticle material.

Such information has been obtained for the antennal cleaning organ for the first time. Different autofluorescence levels suggest different material composition and properties of the basitarsal comb and calcar of the strigil. Additionally, both structures reveal gradients of physical properties in both analyzed species. Likewise, in both species, either the basitarsal comb or the calcar of the strigil is distinctly more flexible than the counterpart. This is arguably an adaptation for efficient removal of particles of different sizes and adhesive properties from the antennae. Insects must be able to remove dust particles or detritus firmly glued to the cuticle, but at the same time avoid damaging the delicate antennal sensory equipment and minute microstructures of the cleaning device. Therefore, the observed differences in material composition and physical properties might be an optimized solution for these two interrelated problems. However, it remains unclear, why the basitarsal comb is more flexible than the calcar in Formica, while it is the other way around in Sceliphron, as revealed by our CLSM based observations. This approach and results open a wide field for further functional morphological study on the antennal cleaner in Hymenoptera.

As in many other groups of insects, the hymenopteran distal leg combines two functional mechanisms adapted to reliable attachment to substrates with unpredictable properties: (a) an interlocking-based one (claws and spine-like setae) and (b) an adhesion-based one (arolium and plantae). On rough substrate, claws interlock with surface asperities and secure a firm grip, whereas on smooth substrate, the claws slip off the surface, while the arium unfolds and generates adhesive contact (Federle, Brainerd, McMahon, & Hölldobler, 2001; Frantsevich & Gorb, 2002, 2004; Snodgrass, 1956). However, on an intermediate range of substrate roughness, depending on the specific degree of surface irregularity, both these mechanisms can either work in concert or completely fail (Frantsevich & Gorb, 2004). The combined action of both mechanisms was recently tested in an experiment evaluating a rather simple mechanical model (Song, Dai, Ji, & Gorb, 2016).

The tarsal chain is an important part of the attachment mechanism, especially for alignment on different substrate curvatures (Gladun & Gorb, 2007). The articulations in the tibial-tarsal-pretarsal kinematic chain are multiaxial (Frantsevich & Gorb, 2004; Snodgrass, 1956), but with the contraction of the claw retractor muscle, the arolium turns forward and downward simultaneously accompanied by a flexion of the claws. It has been previously shown and is supported by the present study that articulations between tarsomeres and different elements within the pretarsus are surrounded with elastic cuticle containing resilin. The elastic elements ensure a prompt extension of the tarsus after relaxation of the retractor muscle and the removal of the load from the arolium and/or claws (Snodgrass, 1956).

Previous data on walking techniques of sphecid wasps (Mellinus arvensis [Linnaeus]) and formicine ants (Formica polyctena Förster) showed that they use contact of distal tarsomeres of overextended
tarsi on flat surfaces (Gladun & Gorb, 2007), whereas they have difficulties to walk on a thin horizontal rod. In the latter situation, fore and hind legs rely either on distal tarsomeres or on the center of the over-extended or slightly bent tarsus. If the middle part of the tarsus is used in contact, distal tarsomeres (especially of the midlegs) do not touch the substrate. Climbing upward on rods requires labor division between different pairs of legs (Gladun & Gorb, 2007). While walking up a thin rod, the fore tarsi of F. polycrata ants often clutch the substrate with the claws. Ants can walk down thin vertical rods, but sphe-cid wasps were not able to do this (Gladun & Gorb, 2007). These differences might be related to the differences in the relative dimen-sions between the tarsi and substrate curvature in sphecid wasps and ants. Additionally, relatively longer tarsi of ants may support running down thin rod-like objects. Walking on distal tarsomeres, observed in wasps and ants, is presumably an apomorphic character of Hymenoptera (Frantsevich & Gorb, 2004), in contrast to walking on the entire tarsus in some other insects, such as for instance beetles.

The presumed specialization of ants for efficient locomotion on the ground is also documented by their remarkable ability to stay on surfaces or regain contact with a surface in microgravity on the Interna-tional space station (Countryman et al., 2015).

The hairy coverage at the bottom of the distal tarsomeres presumably plays a role in preventing slipping during walking on horizon-tal surfaces, when other attachment structures such as the claws or arolium are not necessarily in contact with the substrate. Elastic ends of the hairs (with a higher resilin concentration) may enter micro-crevices of the substrate and provide thousands of interlocking sites contributing to the overall friction (Frantsevich & Gorb, 2004). The tarsal plantulae of Sceliphron, due to their soft properties, might addi-tionally increase friction on horizontal flat substrates, and enhance grasping efficiency of the wasp during transportation of items in flight. These structures are also widespread in symphytan groups, where they might provide strong anchorage on the substrate during oviposi-tion into plant tissue. Oecophylla smaragdina Fabricius (Formicinaceae) climbing efficiently on smooth vertical surfaces was investigated by Endlein and Federle (2015). The authors could demonstrate that the weaver ants do not only use their arolia, but also dense arrays of fine setae on the ventral side of tarsomeres 3 and 4.

The unfolding mechanism of the arolium is rather complex, because it lacks real solid or rigid condylar joints except the articulation between the base of the manubrium and two sockets in the dorsal edge of the fifth tarsomere (Baur & Gorb, 2001; Federle et al., 2001; Frantsevich & Gorb, 2004). The soft and compliant nature of the arolium pad is due to an internal meshwork of dendrite-like filaments filled with the fluid in between (Baur & Gorb, 2001; Federle et al., 2001). The observed differences between Sceliphron and Formica in the folded arolium configuration presumably correlate with the differences in the mechanism of folding/unfolding, which is size-dependent in different groups of Hymenoptera. It has been previously demonstrated that bees and hornets use mainly the sclerite-mechanics-based unfolding mecha-nism (Federle et al., 2001; Frantsevich & Gorb, 2004), whereas ants use the hydraulically driven one (Federle et al., 2001).

Depending on the specific biology of the specific ant (or wasp) species and their substrate preferences, tarsal and pretarsal struc-tures may have evolved additional specializations, especially in the arolium dimensions and specific shapes of the claws (Billen, Al-Khalifa, & Silva, 2017).

The present work will be the foundation of a future project on the evolution of distal leg structures in Formicidae and other groups of Aculeata. Our results show that while most of the general anatomical structures are conserved in ants, there are some distinct modifications probably related to a ground dwelling and social lifestyle. Comparisons with the literature also reveal considerable variation within Formicidae, for instance with regard to different levels of reduction of the arolium. The present study will be the starting point of more extensive investigations comparing distal leg structures across the Formicidae and reconstructing the evolution of this charac-ter system across the entire family.

ACKNOWLEDGMENTS

The authors are very grateful for valuable information provided by Dr. Dmytro Gladun (Schmalhausen Institute of Zoology, Kiev, Ukraine). Detailed comments made by Brendon Boudinot helped greatly to improve this manuscripts, and also many suggestions made by an anonymous reviewer. This is also gratefully acknowledged. We are also grateful to Dr. Alexander Stoessel for providing access to the μ-CT facilities of the Max-Planck-Institut für Menschheitsgeschichte (Jena). The authors also thank Daniel Tröger (Jena University, Jena, Germany) for providing several specimens or S. caementarium, and Thomas Parmentier (Ghent University, Gent, Belgium) for providing specimens of F. rufa, and also the Agentschap voor Natuur en Bos (Agency of Nature and Forest) for granting him permission to collect these insects. Additionally, the authors are grateful for some Formica samples provided for test scans using CLSM by T. H. Büscher (Kiel University, Kiel, Germany). The authors thank the Okinawa Institute of Science and Technology Graduate University Imaging Section for providing access to the Zeiss Xradia µCT scanner and Shinya Komoto for technical support. A. R. is supported by a scholarship of the Evangelisches Studienwerk Villigst eV. This is gratefully acknowledged. E. P. E. and F. H.-G. are both supported by subsidy funding to the Okinawa Institute of Science and Technology Graduate University.

CONFLICT OF INTEREST

The authors declare no potential conflict of interest.

AUTHOR CONTRIBUTIONS

Rolf Georg Beutel, Stanislav N. Gorb, and Evan P. Econom have designed the project. The μCT-data were provided by Adrian Richter, Francisco Hita-Garcia and Evan P. Econom. Adrian Richter and Yoko Matsumura documented the structural features with CLSM and SEM, and Adrian Richter did the 3D reconstructions based on μCT data. Roberto A. Keller has contributed rich information on structural features of ants and the variation within the group. All authors have participated in writing the manuscript and all have commented on the
final version. Stanislav N. Gorb wrote the section on functional aspects.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Adrian Richter https://orcid.org/0000-0001-5627-2302

REFERENCES

