Morphological variation and mermithism in female castes of *Colobopsis* sp. nrSA, a Bornean "exploding ant" of the *Colobopsis cylindrica* group (Hymenoptera: Formicidae)

Alice Laciny, Herbert Zettel, Brian Metscher, Abu Salim Kamariah, Alexey Kopchinskiy, Carina Pretzer & Irina S. Druzhinina

Abstract

Colobopsis sp. nrSA is an ant species of the Southeast Asian *Colobopsis cylindrica* group (formerly in the genus *Camponotus*), which is currently being studied in the course of a long-term project focusing on the ecology and evolution of its members. We herein describe the morphological diversity of a colony fragment in an artificial nest established at the Kuala Belalong Field Studies Centre, Brunei Darussalam. The caste composition of the nest fragment was analysed and species conformity was proved by DNA barcoding. We describe the morphological traits in both worker subcastes, gynes, an intercaste individual, and aberrations of gynmorphology caused by mermithid parasitism with a focus on morphology. Mermithogynes were examined by micro-CT imaging to confirm the presence of parasitic nematodes. The high morphological diversity of *Colobopsis* sp. nrSA in comparison with more distantly related species of *Colobopsis* is discussed in the light of the recently revised phylogeny of Camponotini, and ecological as well as evolutionary questions are addressed.

Key words: Formicinae, Camponotini, *Colobopsis*, *Camponotus*, morphology, castes, phragmosis, Mermithidae, soldier, polymorphism, phylogeny.

Myrmecol. News 24: 91-106; licensed under CC BY 3.0
ISSN 1994-4136 (print), ISSN 1997-3500 (online)

Received 20 April 2016; revision received 13 October 2016; accepted 18 October 2016
Subject Editor: Alexander S. Mikheyev

Alice Laciny (contact author), Natural History Museum Vienna, 2nd Zoological Department, Burgring 7, 1010 Vienna, Austria; Department of Theoretical Biology, Althanstraße 14, 1090 Vienna, Austria.
E-mail: alice.laciny@nhm-wien.ac.at

Herbert Zettel, Natural History Museum Vienna, 2nd Zoological Department, Burgring 7, 1010 Vienna, Austria.

Brian Metscher, Department of Theoretical Biology, Althanstraße 14, 1090 Vienna, Austria.

Abu Salim Kamariah, Universiti Brunei Darussalam, Environmental and Life Sciences, Jalan Tungku Link, Bandar Seri Begawan BE 1410, Brunei Darussalam.

Alexey Kopchinskiy, Carina Pretzer & Irina S. Druzhinina, Research Area Biochemical Technology, Institute of Chemical Engineering, TU Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria.

Introduction

Phragmosis, i.e., blocking nest entrances with a body part, is found in various ant genera (e.g., HODDOBLER & WILSON 1990, FISCHER & al. 2015), but constitutes a key character for *Colobopsis* ants. *Colobopsis* was described as a genus by Gustav MAYR (1861) but later on frequently treated as a subgenus of *Camponotus* MAYR, 1861. Most recently published molecular data suggest that *Colobopsis* is a distinct clade of the Camponotini and not even the sister taxon of *Camponotus* (BLAİMER & al. 2015, WARD & al. 2016). According to WARD & al. (2016), *Colobopsis* comprises 94 valid species (including one fossil) and is commonly defined by a worker dimorphism: Minor workers are clearly distinguished from major workers with phragmotic heads (e.g., MCArTHUR 2012), which in some species, e.g., in the type species *Colobopsis truncata* (SPINO-LA, 1808), bear a well-defined anterior shield composed of clypeus and genae, whereas in other species the head can be less strongly modified. Gynes are also phragmotic and resemble the major worker phenotype in many characters. Advanced forms of phragmotic heads (vertically truncated, with sharply limited shields) have likely evolved independently at least twice in *Colobopsis*, in the *C. truncata* group and in the *C. saundersi* complex of the *C. cylindrica* group (H. Zettel & A. Laciny, unpubl.). Besides size and head structures, little has been published on the morphological differences of *Colobopsis* worker morphs (e.g., HASEGAWA 1993).

The *Colobopsis cylindrica* group (COCY) was established by MCArTHUR (2012), although some species were subsequently excluded to keep the clade monophyletic. The species group can be subdivided into several distinct complexes by morphological traits (e.g., microsculpture of abdominal tergites) and molecular data (COOK 2008; I. S. Druzhinina, A. Kopchinskiy, A. Laciny, C. Pretzer &
H. Zettel, unpubl.). Although the two distinct phenotypes of minor and major workers also occur in COCY species, our preliminary morphometric studies revealed a surprisingly high variability in body size of the minor worker caste, subsequently leading to the study at hand.

Using a unique multidisciplinary approach of morphometry, DNA barcoding, and X-ray microtomography (micro-CT), this study aims to provide the first detailed characterizations of all female castes of the hitherto undescribed Bornean COCY species Colobopsis sp. nrSA ("near Saunders", DAVIDSON & al. 2007). We analyse the caste composition of a nest fragment and confirm the species identity and presence of parasites in presumed mermithogynes. Our results shed light on the morphological consequences of mermithid parasitism and contribute our perspective on unsolved questions of nutritional biology and the evolution of the soldier caste. Furthermore, we interpret our findings taking into account the newly revised phylogeny of the Camponotini (WARD & al. 2016).

Female polymorphism in Camponotini

A conspicuous difference between ants and other social Hymenoptera (wasps and bees) is the extent of morphological divergence between reproductive females, called gynes or queens, and non-reproductive female helpers, called workers (PEETERS & ITO 2015). Whereas ant males differ from diploid females by a haploid genotype, female differentiation is largely phenotypic, although genetic and epi-genetic factors have been found to play a role in the caste determination of several species (ANDERSON & al. 2008). The emergence of the wingless worker phenotype is hypothesized to have been a major facilitator for the evolution of novel behavioural adaptations as well as the striking intraspecific divergence in size often observed between gynes and workers (PEETERS & ITO 2015). Further differentiation of specialised worker castes is found in many ant genera and polymorphism of gynes (e.g., ergatoid or brachypterous gynes) is even more common (PEETERS 2012).

Within the tribe Camponotini there is a strong variation in the number of distinct helper castes. The scattered distribution of worker mono-, di- and polymorphism in a tree based on 959 ultraconserved element loci (from BLAIMER & al. 2015) indicates high plasticity (Fig. 1). The conservative character of a monomorphic worker caste is retained in Polyrhachis Smith, 1857, Calomyrmex Mayr, 1861 and Echinopla Smith, 1857 (e.g., DOROW 1995, ZETTEL & LACINY 2015). In the Australian genus Opisthopsis DALLA TORRE, 1893 workers are "monomorphic or slightly dimorphic" (WHEELE 1918). In the genera Camponotus, Colobopsis, and DinomyrmexASHMEAD, 1905, which were treated as one genus Camponotus until recently (WARD & al. 2016), the presence of more or less distinct minor and major worker subcastes is most common (BRADY & al. 2000, MCArTHUR 2007, LACINY & al. 2016), but within the speiose genus Camponotus many exceptions are known. For example, Camponotus lig-nip erda (LATREILLE, 1802) (LEUTERT 1962) and C. seri- ceiventris (GUÉRIN-MÉNEVILLE, 1838) (BUSHER & al. 1985) are strongly polymorphic along a continuous series with a wide range of worker sizes, the subgenus Dendromyrmex EMERY, 1895 is reported as monomorphic (BRADY & al. 2000), and in the subgenus Forelophilus KUTTER, 1931 (formerly a separate genus) some intermediates between minor and major workers have occasionally been observed (ZETTEL & ZIMMERMANN 2007). The situation in Colobopsis is discussed below.

The soldier question

A special case of ant polymorphism is the evolution of "soldiers", large specimens that often possess some similarities with gynes and have important functions in nest defence. Whether the soldier caste is derived from gynes or workers has been controversially discussed in the past (BARONI URBANI & PASSERA 1996, WARD 1997). More recently MOLET & al. (2012) presented a conceptual model based on modularity in morphology and development: The authors hypothesize that the basis for novel phenotypes with distinct functions may lie in the occurrence of rare mosaic castes or intercastes, stabilized by colonial buffering. According to this model, soldiers are not merely scaled-up versions of conspecific minor workers but are defined by possessing novel traits and proportions due to differing or partially "recycled" developmental pathways (MOLET & al. 2012, 2014, LONDE & al. 2015). If this is true for the studied clade, majors of COCY species may also be referred to as "soldiers", but will be termed "phragmotic major workers" in the course of this study, to better illustrate their function within the colony.

Morphological changes caused by mermithid parasitism

One fascinating phenomenon that has long captivated the attention of researchers is the infestation of ants by parasitic mermithid nematodes, and the accompanying aberrant morphologies brought about in the hosts. Such parasitized individuals are known from several subfamilies of ants (WHEELER 1928, ÇÖSÖZ 2012) and have also been observed to infest a Colobopsis species of New Guinea (MAEYAMA & al. 1994). Infested individuals often bear morphological features that are intermediate between castes, resulting in so-called intercaste phenotypes (WHEELER 1928). Observable morphological changes include smaller overall size, elongated legs, enlarged gaster (due to distension by the

![Fig. 1: Worker caste diversity in Camponotini applied to a tree by BLAIMER & al. (2015) based on 959 ultraconserved element loci. Large symbols indicate the dominant situation in the genus, small symbols deviations.](image)
nematode), reduced size of head, deviations in pilosity and sculpture, as well as reduction of wings, thoracic sclerites, ovaries, and ocelli in specimens with otherwise gynelike morphology (WHEELER 1928, KAISER 1986, CZECHOWSKI & al. 2007, O’GRADY & BREEN 2011, POINAR 2012). These parasitogenic phenotypes have even led to taxonomic confusion in the past (CZECHOWSKI & al. 2007, CSÓSZ 2012, BOROWIEC & SALATA 2015), as morphologically aberrant individuals were erroneously described as separate, parasitic species (e.g., the holotype of Myrmica symbiotica (MENOZZI, 1925), actually a mermithized individual of M. scabrinodis NYLANDER, 1846; CSÓSZ 2012). Since the phenotypes produced by mermithid infestation can lie anywhere on a range from almost normal worker morphology ("mermithergates") to gyne-like specimens with only slightly reduced features ("mermoth ygynes") (CSÓSZ & MAJOROS 2009), many authors have stated that all castes are potential hosts to parasitic nematodes (e.g., PASSERA 1975, POINAR 2012). However, studies on the genera Lasius Fabricius, 1804 (KAISER 1986, O’GRADY & BREEN 2011) and Myrmica Latreille, 1804 (CSÓSZ & MAJOROS 2009) revealed that all potential mermithogenic phenotypes develop from larvae destined to be sexuals, i.e., gynes or males, and showed no infestation of workers.

A noteworthy consideration put forth by MOLET & al. (2012) is that such mermithogenic intercaste specimens are the results of – presumably hormonal – perturbations during development preventing the complete switch between worker and gyne phenotypes. Studying these animals therefore provides valuable insight into the modular nature of caste development, as some traits are modified under parasitic influence, but not others. Furthermore, if the propensity to produce such aberrant mermithogenic phenotypes results from heritable phenotypic plasticity and modularity, these same developmental processes could also play a role in the evolution of novel castes (MOLET & al. 2012, LONDE & al. 2015).

Material and methods

Sampling

Field work was carried out at the Kuala Belalong Field Studies Center (KBFSC) of the Universiti Brunei Darussalam located in the Ulu Temburong National Park, Brunei Darussalam (4° 32’ 35.5” N, 115° 09’ 09.3” E), in the course of an ongoing long-term investigation of ecology and evolution of the C. cylindrica species complex. The specimens were collected from an artificial nest (#27) constructed as described in DAVIDSON & al. (2009). The nest is illustrated in Figure 2a. Briefly, a cavity approximately 15 mm in diameter was drilled into the center of a 100 cm tall and 6 cm wide square wooden stake. Within the top third of the stake an entrance hole was drilled at a right angle to the center cavity using a 4 mm drill-bit. The entire construction was covered with waterproof green acrylic paint. In May 2014, nest #27 was installed standing vertically at the base of a Shorea sp. tree in the vicinity of a large colony of Colobopsis sp. nrSA. The artificial nest was connected to the stem of a small adjacent tree using a thin rope (Fig. 2b).

A year later, on April 16, 2015, nest #27 was visually inspected in situ. As Colobopsis cylindrica antts are strictly diurnal, sampling was performed at night assuming maximum nest occupation. The entrance hole was blocked with a wooden stick; the nest was tightly packed into plastic wrap and transferred to the laboratory at KBFSC. In the laboratory it was first cooled in the refrigerator (+10 °C) for 45 minutes and subsequently transversely cut into 5 cm sections. All nest occupants were taken out with sterile forceps and stored in 70% ethanol or RNAlater® Solution (ThermoFisher Scientific, MA, USA) in several 2 ml microcentrifuge tubes.

Specimens and depositories

The imagines of nest #27 were sorted according to morph and counted. A subsample of specimens to be used for morphometry was selected in the following way: all phragnomic major workers (6 specimens); the only intercaste individual (1 specimen), all mermithygynes (2 specimens); 10 alate gynes (selected randomly from a pool of 43 specimens), and 42 minor workers selected as follows: 200 minor workers were taken randomly from a pool of ca. 550 specimens and roughly sorted to four size classes by head width (Fig. 3) at magnifications of 25.6 x with a Nikon SMZ1500 binocular microscope (each group ranging two micrometer units = 0.125 mm). Out of these, 42 minor workers were selected for mounting and measurements. We hereby included a representative number of individu-

![Minor worker size class distribution](image)

Fig. 3: Distribution of head width classes in a sample of 200 minor workers of Colobopsis sp. nrSA. Specimens were sorted into four size classes by head width, each group ranging 0.125 mm. Class-ranges (mm): I (< 1.375), II (1.375 - < 1.50), III (1.50 - < 1.625), IV (≥ 1.625).
Tab. 1: Primers used in this study.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Name</th>
<th>Sequence 5' - 3'</th>
<th>Length</th>
<th>GC content [%] 40 - 60</th>
<th>Fragment length [bp]</th>
<th>Annealing temp. [°C]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>COI</td>
<td>LCO1490-F</td>
<td>GGTCACAAAAATCATAAGATATTGG</td>
<td>25</td>
<td>32</td>
<td>709</td>
<td>45</td>
<td>CHEN & al. (2013)</td>
</tr>
<tr>
<td></td>
<td>HCO2198-R</td>
<td>TAAACCTCAGGGTTACCAAAAATCA</td>
<td>26</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COII</td>
<td>J2791-F</td>
<td>ATACCHGDCGATAYTCAGA</td>
<td>20</td>
<td>40 - 55</td>
<td>858</td>
<td>51</td>
<td>CHEN & al. (2013)</td>
</tr>
<tr>
<td></td>
<td>H3665-R</td>
<td>CCACARATTCWGAACATTG</td>
<td>20</td>
<td>35 - 40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

als from each of the four classes (corresponding to their approximate proportions in the larger subsample) as well as the overall largest and smallest specimens. In total, 61 female specimens were dry-mounted on triangular glue-boards, individually numbered, and used to take measurements at magnifications from 25.6 x up to 256 x, depending on the respective character measured. Results present minimum and maximum values for each morph. The data set of measurements (Tab. S1) is available as an electronic supplement on the journal’s web page.

Specimens are preliminarily kept in the Natural History Museum Vienna, but after a formal description of the species will be shared between the Brunei Museum, the Natural History Museum Vienna, and other institutions.

Measurements and indices

The following measurements and indices were obtained from 61 specimens for morphometric characterization of female phenotypes.

- **CI**: Cephalic index. HW / HL × 100
- **EI**: Eye Index. EL / HW × 100
- **EL**: Eye length. Maximum diameter of compound eye, measured in lateral view.
- **FeI**: Femur Index. FeL / HW × 100
- **FeL**: Femur length. Maximum length of metamefur, measured from base to apex.
- **FWL**: Forewing length. Length of forewing, measured from tegula to distal tip.
- **HaL**: Hair length. Length of the longest standing hair on first gastral tergite, measured from base to apex.
- **HL**: Head length. Maximum length of head in full-face view, excluding mandibles, measured from anterior-most point of clypeus to posterior-most point of head vertex, parallel to midline.
- **HW**: Head width. Maximum width of head in full-face view, excluding eyes if protruding; only in gynes.
- **ML**: Mesosoma length. Measured laterally from anterior surface of pronotum proper (excluding collar) to posterior extension of propodeal lobes.
- **MSW**: Mesoscutum width. Maximum diameter of mesoscutum, measured dorsally.
- **OcD**: Ocellar distance. Minimum distance between lateral ocelli, measured between median borders.
- **OcW**: Ocellus width. Maximum diameter of median ocellus.
- **OED**: Ocellar eye distance. Minimum distance between lateral ocellus and outer border of compound eye.
- **OI**: Ocellar Index: OED / OcD × 100
- **PH**: Petiole height. Maximum height of the petiole in lateral view, measured from ventral-most point of petiolar sternum to dorsal apex.
- **PI**: Petiole Index. PH / PL × 100
- **PL**: Petiole length. Maximum length of petiole in lateral view, measured from inflexion point of anterior constriction to posterior margin, perpendicular to axis of maximum height.
- **SI**: Scape index. SL / HW × 100
- **SL**: Scape length. Maximum length of antennal scape in dorsal view excluding basal neck and condyle.
- **SW**: Scape width. Maximum width of antennal scape, measured dorsally.
- **SWI**: Scape width index. SW / SL × 100
- **TL**: Total length. The added lengths of head (excluding mandibles), mesosoma, petiole, and gaster.

Photographs

Stacked digital images were taken with a Leica DFC camera attached to a Leica MZ16 binocular microscope with the help of Leica Application Suite V3, stacked with Zerene-Stacker 64-bit, and processed with Adobe Photoshop 7.0.

Micro-CT

Two morphologically aberrant specimens (specimen numbers 1137 and 1138) as well as an alate gyne (no. 1139) and the intercaste individual (no. 1385) were analysed using micro-CT to screen for parasites. Pinned specimens were mounted dry without contrast staining (METSCHER 2009, SOMBKE & al. 2015). For some, the glue-board was removed from the pin and held in a clamp during scans; for others the pin itself was clamped in place for scanning. X-ray microtomographic images were made with a high-resolution micro-CT system (Xradia, MicroXCT-200, Zeiss X-Ray Microscopy, Pleasanton, CA) with a tungsten microfocus X-ray source and variable secondary optical magnification. These scans were made with an anode voltage setting of 60 - 75 kV at 5 W, with an exposure time of 2 - 3 seconds for projection images every 0.25 or 0.20 °. Tomographic reconstructions were exported as image stacks with isotropic voxel sizes of 4.7 - 5.0 μm.

DNA extraction, PCR amplification and sequencing

For DNA barcoding genomic DNA was extracted from legs using Qiagen’s QIAamp DNA Micro kit (Qiagen, Venlo, Netherlands) using the tissue protocol. Three legs of one major worker, one alate gyne and one micropterous mermithogyne, respectively, 12 legs of two minor workers and five legs of the intercaste specimen were placed separately in 1.5 ml microcentrifuge tubes and frozen with liquid nitrogen. The frozen legs were ground into small pieces with disposable pestles and an appendant pestle motor (Kimble, Vineland, NJ, USA). Subsequent steps were performed according to manufacturer’s instructions with the following modifications: sample lysis for 20 hours, final elution step with 23 μl elution buffer. DNA concentration and 260 / 280 nm ratio to assess the purity of the extracted DNA were measured with NanoDrop ND-1000 Spectrophotometer.

Fragments of cytochrome c oxidase subunit I and II (COI, COII) were amplified. Primer sequences and temperature protocols are given in Table 1.

Final concentrations for PCRs were 1X GoTaG Flexi Buffer (Promega, Madison, Wisconsin, USA), 0.016 mM dNTPs, 3 mM MgCl₂ (Promega), forward and reverse primer (Microsynth, Balgach, Switzerland) (final concentrations: COI: 0.3 µM, COII: 0.35 µM), 0.7 Units GoTaqG2 Flexi Polymerase (Promega) and 5 - 12 ng sample (diluted with HLPC water, ROTH), in a final volume of 50 µl. PCR was performed with a Biometra T3 Thermocycler (Biometra, Göttingen, Germany) with the following conditions: 2 min at 94 °C, 35 cycles of 1 min at 94 °C, 1 min at primer specific annealing temperature (45 °C for COI, 51 °C for COII) and 90 sec at 72 °C and finally 7 min at 72 °C. PCR products were separated by 1.5% agarose gel electrophoresis. PCR products were purified using mi-PCR Purification Kit (Metabion, Planegg, Germany) and one direction sequencing was performed at Microsynth.

Sequences are deposited in the NCBI GenBank under KU975365 and KU975366 for COI and COII, respectively. The following COI and COII sequences were accessed via GenBank and used for comparative alignments (Fig. S1): EF634187 "Camponotus cylindricus s.l. nrSA" EF634197 "Camponotus cylindricus s.l. SCY" EF634203 "Camponotus cylindricus s.l. OG" EF634199 "Camponotus cylindricus s.l. RHOG" EF634201 "Camponotus cylindricus s.l. YG" EF634193 "Camponotus cylindricus s.l. CL".

Statistical analysis of measurements

Eleven measurements, taken from minor workers, minor workers, and gynes, were compared using Kruskal-Wallis rank tests. All comparisons that yielded significant differences between sample medians were followed by a pairwise Mann-Whitney test with Bonferroni correction (modified after MOLET & al. 2014). Each test was adjusted for three multiple comparisons (Np = 3), thereby lowering the limit for significance to p = 0.0167. Values shown in Table 3 are p' = p × Np, therefore marked as significant if p' < 0.05.

In addition, coefficients of variation were computed for the two main measures of body size (HW, ML) in majors, minors and gynes. Lower and upper limits for 95% confidence intervals were obtained via Bootstrap (10,000 resamplings). In the case of non- or only very marginally overlapping confidence intervals, coefficients of variation are interpreted as significantly different at or above the 95% level (H.L. Nemeschkal, pers. comm.; see also PAYTON & al. 2003). All calculations were performed in Past 3 (HAMMER & al. 2001). The intercaste individual and the two mermithogynes were excluded from all analyses due to insufficient sample size.

Results

Sampling

The artificial nest contained approximately 550 minor workers, six phragmatic major workers, one intercaste specimen, 43 alate gynes, two micropterous mermithogynes, as well as brood (eggs, larvae, pupae) of Colobopsis sp. nrSA. In addition to the colony members, a small number of myrmecophile or parasitic arthropods were detected as well: three symbiotic crickets of the genus Camponophilus Ingrisch, 1995 and one “interloper” ant – a mimic, presumably socially parasitic ant of an undescribed species of Camponotus frequently observed within samples of Bornean Colobopsis colonies (DAVIDSON & al. 2016). The examined sample of 200 minor workers ranged from 1.37 mm to 1.67 mm in head width. Specimens belonging to the largest and smallest size classes were rare (7 individuals in classes I and IV, i.e., 3.5% respectively) compared to the two intermediate classes (class II: 115 individuals, i.e., 57.5%; class III: 71 individuals, i.e., 35.5%; see Fig. 3).

Species identification

Within the COCY group, the studied species belongs to a complex including Colobopsis saundersi (EMERY, 1889) and C. badia (SMITH, 1857). Based on our comparisons to type specimens and high-quality photographs thereof (AntWEB 2016) it is most probably undescribed. Species identity of the specimens previously studied by D. Davidson and the material used in the present study was confirmed by comparison of morphology as well as COI and COII sequences deposited in NCBI GenBank (Fig. S1). We currently refrain from presenting a formal description of the species, as it would be preferable to describe it in the course of a revision of the C. saundersi complex.

Micro-CT

X-ray microtomographic images of both examined micropterous gynes clearly showed parasitic mermithid nematodes coiled up within the gaster (Fig. 4). The diameter of the nematodes was measured to be roughly 0.25 mm; their length was estimated to be around 40 mm. Images of the alate gynae and the intercaste specimen showed only the remnants of internal organs and no trace of parasites, thus indicating that they were not infested by mermithid nematodes.

Molecular diagnostics

The concentration of extracted DNA and DNA purity are given in Table 2. Molecular verification of genetic identity between minor and major workers, alate gynes, the intercaste specimen, and micropterous mermithogynes was confirmed based on the analysis of COI and COII sequences (see Fig. S1). The results of the molecular analyses also place Colobopsis sp. nrSA within the saundersi complex of the C. cylindrica group, which is in accordance with morphological results.

Description of phenotypes

Minor worker (Figs. 5a, b, 7a): Measurements (n = 42): TL 5.55 - 7.21; HW 1.37 - 1.67; HL 1.54 - 1.93; EL 0.37 - 0.44; SL 1.37 - 1.52; SW 0.13 - 0.16; ML 1.89 - 2.35; HaL 0.10 - 0.19; PH 0.47 - 0.58; PL 0.37 - 0.46; FeL 2.05 - 2.33. Indices: CI 86 - 92; SI 90 - 102; SWI 9 - 11; El 26 - 29; PI 115 - 132; FeL 136 - 155.

Structures: Head subovate, longer than wide; sides anteriorly convex; microstructure consisting of very fine, isodiametric or transverse meshes; intermixed punctuation very fine and inconspicuous on face, larger but shallow laterally and ventrally. Eyes small, flat, positioned dorso-laterally, in smallest workers almost reaching outline of head. Ocelli lacking, in some larger specimens their posi-
Fig. 4: X-ray microtomographic images illustrating the gaster of the mermithogyne #1137 in (a) lateral, (b) sagittal cutaway, and (c) dorsal aspect.

Fig. 5: Heads, full face view, of female castes of Colobopsis sp. nrSA. (a) Small minor worker; (b) large minor worker; (c) intercaste specimen; (d) phragmotic major worker; (e) mermithogyne; (f) alate gyne.

Tab. 2: Concentration [ng / µl] and 260 / 280 ratio of extracted DNA.

<table>
<thead>
<tr>
<th>Preservation before extraction</th>
<th>TUCIM No. (Sample ID)</th>
<th>ng / µl</th>
<th>260 / 280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol 5696 (362) minor worker</td>
<td>24.2</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>5700 (359) major worker</td>
<td>9.3</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>5698 (360) mermithogyne</td>
<td>50.1</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>5699 (361) alate gyne</td>
<td>23.7</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>RNAlater® solution 6060 (479) intercaste specimen</td>
<td>10.5</td>
<td>1.6</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Minors of Colobopsis sp. nrSA can be identified as belonging to the C. saundersi complex by the distribution of head and mesosoma pilosity, the microstructures of the dorsal areas of gaster tergites 1 - 3, and a large SWI. Within this complex Colobopsis sp. nrSA strongly differs from hitherto described species by colour: other known species of the complex are rather uniformly reddish-brown, while Colobopsis sp. nrSA is characterized by a red head and a black body.
Fig. 6: Head shields, perpendicular view, in specimens of *Colobopsis* sp. nrSA. (a) Intercaste specimen; (b) phragmatic major worker; (c) mermithogyne; (d) alate gyne.

Structures: Head large, subcylindrical, anteriorly truncated. On posterior areas of face punctuation slightly stronger than in minor worker. Eyes distant from vertex. Ocelli lacking, position of anterior ocellus indicated by shallow groove. Anterior part of head forming a declivous shield, but in contrast to major workers the shield is not sharply limited by a crest. Clypeus with coarse longitudinal striation. This striation medially extended onto frons and genae till level of antennal grooves, laterally on genae shorter and weaker. Mandible with distinct ventrolateral ridge; its lateral face rugose-striate, punctures of dorsal-anterior face as in minors. – Structures of mesosoma, legs, petiole, and gaster as in minor worker.

Colour: as in minor worker.
Pilosity: as in minor worker, except long setae on clypeus sides restricted to the posterior, horizontal part.

Notes: Based on the rarity of this morph and its co-occurrence with alate gynes in the same nest, this individual is regarded as an anomalous intercaste (in the sense of MOLET & al. 2012; see also PETERS 1991, HEINZE 1998). It differs from both minor workers and phragmotic major workers in the intermediate structures of clypeus and mandibles. The possibility of this aberrant morphology being the result of mermithism was ruled out by a micro-CT scan of the animal's gaster which showed no parasite.

Phragmotic major worker (Figs. 5d, 6b, 7c): Measurements (n = 6): TL 8.25 - 9.42; HW 1.91 - 2.07; HL 2.58 - 2.77; EL 0.53 - 0.60; SL 1.28 - 1.38; SW 0.18 - 0.22; ML 2.80 - 3.26; HaL 0.15 - 0.23; PH 0.71 - 0.79; PL 0.45 - 0.53; FeL 1.73 - 1.91. Indices: CI 72 - 75; SI 66 - 69; SWI 14 - 16; EI 28 - 30; PI 151 - 153; FeI 90 - 95.

Structures: Head large, subcylindrical, anteriorly truncated. On posterior areas of face punctuation slightly stronger than in minor worker. Eyes distant from vertex. Ocelli lacking, position of anterior ocellus indicated by shallow groove. Anterior part of head forming a large shield that is limited by a sharp and elevated crest so that the shield surface is concave. Clypeus with coarse longitudinal striation. This striation medially extended onto entire frons and onto genae up to level of antennal grooves, laterally on genae
similarly long and strong. Mandible with sharp and high ventrolateral ridge; its lateral face rugose-striate, dorsal-anterior side with fine striation in addition to coarse punctuation; dentition on masticatory margin obsolete. Antenna shorter than in all other morphs. – Mesosoma stouter and higher than in minors, especially mesothorax expanded; in lateral aspect dorsal and posterior face of propodeum forming a less obtuse angle than in minor workers, dorsally without out concavity. – Legs much shorter and stouter than in minors and intercaste individual. – Petiole wider than in minors, its node more rounded. – Structures of gaster similar as in minor worker.

Colour: Chiefly as in minor worker, but head darker, posteriorly chestnut brown, anteriorly at head shield strongly infuscated, often blackish.

Pilosity: as in minor worker, except long setae on clypeus sides restricted to the horizontal part behind clypeus shield; mesonotum with standing setae which are only slightly shorter than those on pronotum.

Notes: The head shield with a sharp, elevated crest is typical for majors of the Colobopsis saundersi complex.

Alate gyne (Figs. Sf, 6d, 7e, f); Measurements (n = 10): TL 12.03 - 13.57; HW 1.93 - 2.00; HL 2.51 - 2.64; EL 0.66 - 0.70; SL 1.52 - 1.61; SW 0.22 - 0.23; ML 4.83 - 5.09; Hal 0.21 - 0.30; PH 0.83 - 0.92; PL 0.63 - 0.67; FeL 2.51 - 2.64; OcW 0.18 - 0.19; OED 0.42 - 0.46; OcD 0.53 - 0.60; FWL 11.61 - 12.59; MSW 1.89 - 2.28. Indices: CI 75 - 78; SI 77 - 82; SWI 14 - 15; EI 34 - 36; PL 130 - 147; FeL 127 - 134; OI 71 - 81.

Structures: Head large, subcylindrical, anteriorly truncated, similar as in major worker with the following exceptions: Eyes slightly larger and slightly breaking outline of head in full-face view. Ocelli fully developed. Head shield sharply limited, but slightly smaller, distinctly narrower than head width. Stiation of clypeus, frons and genae similar as in major. Mandible with sharp ventrolateral ridge; its lateral face rugose-striate, but lower than in major; dorsal-anterior face punctured; dentition on masticatory margin present, but weak. – Mesosoma large, structures as typical for alate ants; propodeum large and evenly convex in lateral view. Microstructures dorsally consisting of a very fine puncturation, with intermixed larger punctures, laterally finely reticulated. – Legs stout, but not as short as in major. – Forewing venation strongly reduced, as in most Camponotini; M-Cu absent; MF2 + interstitial. – Petiole distinctly wider than in workers; node rounded in lateral aspect, its apex slightly impressed medially. – Gaster tergites 1 - 4 and sternites 1 - 4 with extremely fine and dense microstructures consisting of strongly transverse meshes; only sides of tergites with wide meshes and shiny; tergite 5 with dense isodiametric reticulation.

Colour: Body chiefly black. Head chestnut brown; anteriorly, especially margins of head shield infuscated. Pronotum and mesonotum with very narrow yellow margins. In specimens that are not yet fully hardened mesosoma with larger yellow parts, and head rather orange red. Gaster tergites medially with very narrow hyaline margins, broadened laterally; sternites with relatively broad posterior margins. Mandibles black. Antenna and legs chiefly black. Wings hyaline, but forewing cells strongly infuscated along veins. On forewing vein Sc + R (except yellow apex) and pterostigma black; other veins brown to yellowish. On hind wing all veins pale yellow.

Pilosity: Short pilosity and distribution of long setae on head, petiole, and gaster similar as in major worker, but that of mesosoma different; pronotum without long setae. Medial part of mesonotum (between parapsidal furrows) and scutellum with numerous long erect setae; lateral part of mesonotum only with 1 - 2 long setae in front of tegulae.

Notes: The head shield with a sharp, elevated crest is typical for gynes of the Colobopsis saundersi complex.

Mermithogyne (Figs. 4a-c, 5e, 6c, 7d); Measurements (n = 2): TL 12.36, 12.03; HW 2.22; HL 2.80, 2.84; EL 0.69, 0.66; SL 1.98; SW 0.20, 0.23; ML 3.68, 3.46; Hal 0.33, 0.34; PH 1.04, 1.06; PL 0.64, 0.63; FeL 3.23, 3.16. Indices: CI 79, 78; SI 89; SWI 10, 12; EI 31, 30; PL 162, 168; FeL 146, 143.

Structures: Head large, subcylindrical, anteriorly truncated, intermediate between major and gyne. Eyes distant from vertex and lateral outline of head. Ocelli lacking, their position indicated by small pits. Anterior part of head forming a large, clearly limited shield similar as in alate gyne; but its edge hardly elevated and not crested, so that the shield surface is only weakly concave. Stiation of clypeus, frons and genae similar as in alate gyne, slightly finer and denser. Mandible as in alate gyne. Antennal scape conspicuously elongated, less widened towards apex than in alate gynes. – Mesosoma structures similar to majors, but in one specimen with a small lobe-shaped forewing remnant, and in the other specimen with a small groove containing a minute laminate structure (presumably wing remnant) at this position. – Legs similar as in alate gyne, but distinctly elongated. – Petiole similar as in alate gyne, but dorsally more elongated and with distinct median impression of the node. – Structures of gaster similar as in alate gyne; gaster enlarged due to presence of parasite.

Colour: Almost entirely black, including appendages. Wing remnants pale hyaline. Gaster tergites medially with very narrow hyaline margins, broadened laterally; sternites with moderately broad posterior margins.

Pilosity: similar to major worker.

Notes: Mermithogyne differ strongly from all other phenotypes by colour, pilosity of mesosoma, structures of petiole, and minute wing remnants. The head morphology, with incompletely crested head shield margins, differs strongly from gynes and phragmotic major workers, and resembles that of majors of more basic representatives of the Colobopsis cylindrica group, e.g., C. leonardi (Emery, 1889). The elongated appendages differ distinctly from those of major workers and gynes and rather resemble the morphological proportions of conspecific minor workers. Among their nest mates the examined mermithogyne appear to belong to a completely different species. However, species identity is clearly confirmed by molecular analyses (see Fig. S1).

Comparison of morphological characters in female castes of Colobopsis sp. nrSA

When comparing the morphometric data acquired from the different castes of the studied sample, one of the most striking results is the considerable size range of the minor workers in comparison to the other castes. When measuring "size" as total body length, the largest minor workers are up to 50% larger than their smallest nestmates, while gynes and major workers respectively are rather uniformly
Fig. 8: Variation of scape length in female castes of Colobopsis sp. nrSA. (a) In relation to head width; (b) in relation to mesosoma length.

Fig. 9: Variation of eye length in female castes of Colobopsis sp. nrSA in relation to head width.

Fig. 10: Variation of metafemur length in female castes of Colobopsis sp. nrSA. (a) In relation to head width; (b) in relation to mesosoma length.

sized. Although often used and quite helpful for overall comparability of castes and species, total body length is a rather unreliable indicator of exact size due to fluctuations caused by storage in ethanol and the drying process. Considering head width, the largest minors surpass the smallest ones by ca. 20% (Fig. 8a, 10a). Although head width is the most commonly used indicator of size – especially in monomorphic ants – one must bear in mind that the major workers of many di- and polymorphic ant species possess greatly enlarged heads in relation to the rest of their bodies, which may lead to problems in comparisons between castes. We therefore prefer to use mesosoma length (often termed Weber's length) as reference to total body size for workers – in this respect the largest minor workers are ca. 25% larger than the smallest specimens (Figs. 8b, 10b). When comparing the largest and smallest of the minor workers it also becomes evident that certain morphological proportions shift with increasing size: FeI, SI and El all tend to be lower in bigger workers (Tab. S1). In workers the size of the mesosoma is of course reduced compared to that of gynes, due to the loss of the flight-apparatus (compare Figs. 7a, c, and e; see also Figs. 8b, 10b). Gynes of Colobopsis sp. nrSA naturally differ from all other castes by their larger overall size, the presence of wings and ocelli, but also by their enlarged eyes (EI 34 - 36 vs. 26 - 31 in all other castes; Fig. 9).

When focusing on phragmatic major workers, perhaps their most striking feature – apart from their truncated heads – is the shape of their appendages. Antennae, legs and palpi are all shortened in comparison to the other castes, and particularly scapes and femora are greatly thickened relative to their length. These differences in proportions become evident in relation to head width (SI, FeI) as well as mesosoma length (which avoids shifts in allometry due to enlarged heads of majors) (Figs. 8b, 10b). In comparison, minor workers, queens and the intercaste specimen are quite similar regarding SI and FeI, while the mermithogynes possess disproportionately longer legs and scapes (Figs. 8a, 10a).

Results of statistical analysis: All eleven measurements compared between majors, minors and gynes in the Kruskal-Wallis rank test yielded significant differences in the sample medians (all p < 0.001). The results of the pairwise Mann-Whitney tests are given in Table 3. Majors and minors as well as gynes and minors differed significantly in all compared measurements. Majors and gynes differed significantly in all characters except for the two measurements of the head (HW, HL). These results reflect the overall morphological caste differences also observed in our morphometric analysis. The lack of significant differences in HW and HL of majors and gynes corresponds to the observed similarity of head-morphology in these castes.
Tab. 3: Results of the pairwise Mann-Whitney tests with Bonferroni correction comparing 11 measurements of major workers, minor workers, and gynes of Colobopsis sp. nrSA: Values shown are $p' = p \times N_p$, adjusted for three multiple comparisons ($N_p = 3$), rounded to three decimal places. Levels of significance: $p' > 0.05 = \text{n.s.}$, $p' < 0.05 = \ast$, $p' < 0.1 = \ast\ast$, $p' < 0.001 = \ast\ast\ast$.

<table>
<thead>
<tr>
<th></th>
<th>Major (n = 6)</th>
<th>Minor (n = 42)</th>
<th>Gyn (n = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL</td>
<td>0.002 **</td>
<td>0.001 ***</td>
<td>0.004 ***</td>
</tr>
<tr>
<td>FeL</td>
<td>0.004 **</td>
<td>< 0.001 ***</td>
<td>< 0.001 ***</td>
</tr>
<tr>
<td>HaL</td>
<td>0.002 **</td>
<td>< 0.001 ***</td>
<td>< 0.001 ***</td>
</tr>
<tr>
<td>HL</td>
<td>< 0.001 ***</td>
<td>> 0.05 n.s.</td>
<td>< 0.001 ***</td>
</tr>
<tr>
<td>HW</td>
<td>< 0.001 ***</td>
<td>> 0.05 n.s.</td>
<td>< 0.001 ***</td>
</tr>
<tr>
<td>ML</td>
<td>< 0.001 ***</td>
<td>< 0.001 ***</td>
<td>0.004 **</td>
</tr>
<tr>
<td>PH</td>
<td>0.014 *</td>
<td>0.014 *</td>
<td>0.037 *</td>
</tr>
<tr>
<td>PL</td>
<td>0.005 **</td>
<td>< 0.001 ***</td>
<td>0.015 *</td>
</tr>
<tr>
<td>SL</td>
<td>< 0.001 ***</td>
<td>< 0.001 ***</td>
<td>0.004 **</td>
</tr>
<tr>
<td>SW</td>
<td>< 0.001 ***</td>
<td>< 0.001 ***</td>
<td>0.004 **</td>
</tr>
<tr>
<td>TL</td>
<td>< 0.001 ***</td>
<td>< 0.001 ***</td>
<td>0.004 **</td>
</tr>
</tbody>
</table>

Fig. 11: Coefficients of variation and their lower and upper limits for 95% confidence intervals, for two main measures of size (HW, ML) in majors, minors, and gynes of Colobopsis sp. nrSA.

Discussion

Nest composition: It is concluded from the absence of a dealate gynae (queen) and the exposure time of the artificial nest (12 months) that the collected individuals are not an entire, newly founded colony, but a subsample of the mature colony also occupying nesting sites in the neighboring trees. As an exchange of individuals from different nests was observed among colony fragments of several species of the COCY group (A. Kopchinskiy, unpubl.) we assume that the caste composition of the artificial nest may be similar to that of an entire mature colony. However, studies on Dinomyrmex gigas (Latrellie, 1802), another polydomous camponotine ant native to Southeast Asia, have shown significant differences in the percentages of major workers between central and outer nests (Pfeiffer & Linsemair 2001). Therefore it cannot be entirely ruled out that the examined artificial nest was preferentially used by certain castes or for specific tasks (e.g., raising of brood) in comparison to other nesting sites. This question will be addressed in more detail in the course of further observations of COCY colonies.

Female polymorphism in the Colobopsis cylindrica group: The worker polymorphism in Colobopsis is very incompletely known, but a well-studied example is the European species Colobopsis truncata, the type species of Colobopsis: Its worker caste is composed of two distinct subcastes – minor workers and phragmotic majors (e.g., Kutter 1977, Seifert 2007); the minor workers vary only slightly in size, at least within the same colony (A. La-ciny & H. Zettel, unpubl.). Such dimorphism seems to be very common in Colobopsis, and was reported for many species (e.g., McArthur 2012). In Southeast Asia we have observed dimorphism in some species of McArthur’s C. vitreus group. However, other species from Southeast Asia are reported to have no phragmatic workers, and Colobopsis macarangae (Dumpter, 1996) apparently lacks a major worker caste altogether (Dumpter 1996). Also some Fijian species have reduced phragmosis (Sarnat & Economow 2012).

Compared with these examples, the morphological variation of Colobopsis sp. nrSA is extremely high, even when mermithogynes and the single intercaste individual are not considered. The size range of minor workers (within the
same colony) is considerable (Fig. 11) and many morphological characters, such as relative size of compound eyes and length of appendages, change in relation to size (Figs. 5a, b; Tab. S1). This variability of minor workers has been observed in all species of the Colobopsis cylindrica group (H. Zettel & A. Laciny, unpubl.) and a similarly broad size range was reported for workers of Camponotus singularis (Smith, 1858) (Laciny & al. 2016) and Cata-
glyphis bombycina (Rogér, 1859) in the tribe Formicini (Molet & al. 2014). It is unknown whether this pheno-
menon is related to a division of tasks within the minor worker caste as it has been described for other ants (e.g.,
Lee 1938, Higash 1974, Escadaler & al. 1990), Tschink-
kel (1988) reported an increase in worker size and size-
variability for older, larger colonies of Solenopsis invicta
Buren, 1972. The differentiation of morphology and tasks
could therefore be related to the large size of colonies of
Colobopsis sp. nrSA and related species (several thousand
individuals; Federle & al. 1998) compared to the small
worker numbers in C. truncata (at most a few hundred
individuals; Seifert 2007). As only a colony fragment
was analysed within this study, however, our data do not
allow us to safely interpret size-variation in minor work-
ers as evidence for differential task allocation. The con-
siderable intraspecific variability (see Fig. 11) of minor
workers of the Colobopsis cylindrica complex largely obs-
cures species-specific differentiation which poses a great
obstacle for identification and morphology-based taxon-
omy, especially because most samples lack major workers
or gynes.

The phragmotic head characters observed in gynes and
major workers of Colobopsis sp. nrSA (and some closely
related species like C. saundersi) have evolved from less
differentiated forms of species that are phylogenetically
more basal within the C. cylindrica group – e.g., C. cylin-
drica (Fabricius, 1798) and C. leonardi (Cook 2008;
I.S. Druzhina, A. Kopchinskiy, A. Laciny, C. Pretzer &
H. Zettel, unpubl.). Gynes and majors of these species do
not possess such sharply delimited head shields and more
closely resemble the intercaste of Colobopsis sp. nrSA in
this character.

Traits of minor workers and gynes in the phrag-
motic major worker: Phragmotic major workers are often
regarded as a special form of "soldiers", a caste that has
been controversially discussed in the past as derived either
from gynes (Baroni Urbani & Passera 1996) or from
"normal" workers (Ward 1997). Traits of both workers
and gynes are expressed in majors of Colobopsis sp. nrSA,
but they also possess specialized morphological features
present in neither of the other female castes, such as distinctly
shortened and thickened appendages. Figures 5 - 7 show
that while the overall appearance of the body is more sim-
ilar to minor workers, the truncated head and distinctive
shield bear close resemblance to gynes (see also Tab. 3).
The slightly enlarged methorax of major workers is also
reminiscent of gyne-morphology, though much less pro-
minent. However, the well-developed pronotum of major
workers is more similar to minors and doubtlessly corre-
lated with the presence of strong neck muscles to support
the enlarged head. Such task-dependent morphological trade-
offs between the methorax (hypertrophied for flight in
alate queens) and the pronotum (enlarged in workers for
optimized foraging and defence) have been observed across
all major subfamilies of ants (Keller & al. 2014). The
overall larger body size in majors of Colobopsis has also
been linked to their function as repletes – i.e., animals which
store liquid and nutrients – within the colony (Hasegawa
1993).

Our morphometric data (Figs. 8, 10) show a pronounced
 thickening and shortening of all appendages in relation to
head width for majors, resulting in considerably lower SI
and FeI, and higher SWI compared to all other castes.
Similar results were obtained in a recent study in
Camponotus singularis, where shortened appendages (antennae,
legs, maxillary palpi) were observed in majors and gynes
(Laciny & al. 2016). In their 1988 study, Feener & al.
found that shorter legs correlated with increased body mass
in workers of Atta colombica Guérin-Ménéville, 1844
and soldiers of Eciton hamatum (Fabricius, 1782). Sim-
ilar to the major workers of various species of Campono-
tus (e.g., Peiffer & Linsenmair 2001, Mysore & al.
2010, Laciny & al. 2016), majors of more basal COCY
species are known to engage in combat outside the nest
(Cook 2008). The strongly modified phragmotic majors of
the C. saundersi complex, however, rarely leave the nest
and have never been observed to fight. In these species,
foraging and combat are presumably performed exclu-
ively by the minor workers which kill enemy arthropods
by autothysis (i.e., the eponymous "exploding" behaviour;
Cook 2008, Davidson & al. 2016). We therefore inter-
pret the shortened and thickened appendages of phragmotic
COCY majors as adaptations to their tasks within the nest:
short, flat scapes can be kept close to the head for optimal
fit into nest-entrances and short, thick legs are certainly
most suitable to support a heavy body with an enlarged
head. In addition, the shorter antennae of Camponotus compressus (Fabricius, 1787) majors specialized in defence
have been linked to a reduced number of chemosensory
sensilla compared to foraging minors (Mysore & al. 2010).
Together with the observed combinations of gyne- and
worker-like characteristics in head and mesosoma morphol-
ogy of majors, our results strongly support the conceptual
model of Molet & al. (2012, 2014) that views such special-
ized castes as developmental mosaics of gyne and work-
er growth programmes.

Morphological aberrations in mermitohynes: The
two micropterous specimens found within the studied arti-
ficial nest were presumed to be mermitohynes based
on their apparently altered morphology which largely cor-
responds to descriptions of mermitized gynes by other
authors (Wheeler 1928, Kaiser 1986, Czechoński &
conformity with nestmates as well as the presence of
parasitic nematodes was confirmed with DNA barcoding
and micro-CT (Figs. 4, S1). Size and appearance of the
parasites correspond well to descriptions of mermithid
nematodes found in Lasius sp. (O’Grady & Breen 2011).
As reported for other genera, we recorded elongated
appendages, altered colour, a distended gaster, and reduced
ocelli (see Figs. 7d, 8, 10). Although wings and thoracic
sclerites were also reduced, mesosomal volume was still
visibly higher than in workers (see Fig. 7), which can be
interpreted as a gyne-like character (Keller & al. 2014).
Contrary to other publications (e.g., Czechoński & al.
2007, O’Grady & Breen 2011) we did not observe over-
all smaller body or head sizes in mermitohynes, which
were roughly the same size as uninfected gynes and possessed even wider heads (Figs. 8a, 10a).

The hypothesis that mermithid nematodes may infect only sexuals (Čsósz & Majoros 2009, O'Grady & Breen 2011) is corroborated by the presence of small wing remnants and gyne-like mesosomal architecture which would not be developed in workers. The exact physiological effects by which the parasite alters host morphology have not been studied to our knowledge. However, based on the conspicuous reductions of the aforementioned gyne-specific characters and the amount of space taken up by the nematode where ovarian structures would be in healthy individuals, hormonal suppression during development may be a crucial factor (O'Grady & Breen 2011, Molet & al. 2012).

Mermithid parasitism as hint to larval food-source? Although the exploding ants of the *Colobopsis cylindrica* group have been the object of several ecological studies (Davidson & al. 2007, 2009, 2016; Cook 2008), the nutrition of adult ants within this group and their brood still remains an open question. The fact that COCY ants have only rarely been observed to prey or feed on animal carcasses (Hashimoto & al. 1997), but rather seem to feed on microbes including fungal spores gathered from leaf surfaces, is corroborated by isotopic evidence (Davidson & al. 2016). This leaves the question of larval nutrition to be answered.

In other ant genera associated with mermithid parasitism, it is well known that infection of the host occurs in the larval stage, when the nematodes’ intermediate hosts – often oligochaetes – are fed to the ant’s larvae as high-protein food-sources (Kaiser 1986). Such an indirect lifecycle is typical for nematodes infecting terrestrial insects and in all studied cases of ants the infection is linked to oral uptake of the nematode’s infective stages by the host’s larvae (Poinar 2012).

As mermithid infection of adult ants of *Colobopsis* sp. nRSA was confirmed within this study, the question arises whether perhaps hitherto unobserved predation (e.g., of oligochaetes) does occur in this species as a means of supplying developing larvae with protein. Observations that may help to support this hypothesis are recently documented instances of predation (H. Zettel & W. Jaitrong, unpubl.) as well as rare occurrences of nematodes within buccal pellets in other species of the COCY group (Davidson & al. 2016). Naturally, without access to more infected specimens and lacking the evidence of observed predation in the studied species, this can only be a tentative assumption at this point, albeit one that may help to uncover the mystery of larval nutrition in this clade within further studies.

Resurrection of *Colobopsis* as a genus (Ward & al. 2016): Based on the molecular study by Blaimer & al. (2015), Ward & al. (2016) resurrected *Colobopsis* as a separate genus. The morphological differentiation between *Colobopsis* and Camponotus attempted in the same paper is based exclusively on head morphology of minors and is not without exceptions. The classification of species that are only known by minor workers – where phragmosis was not yet observed – remains doubtful. Based on observations first reported by Wheeler (1904), Ward & al. (2016) describe an important biological differentiation: pupae of *Colobopsis* are naked, whereas those of Camponotus are enclosed in cocoons. It is unknown how many species have been studied in this respect since the first description of this trait. We ourselves have observed naked pupae in several species of the *Colobopsis cylindrica* group (Fig. S2).

In the study conducted by Blaimer & al. (2015) the taxon sample is quite small (four species of *Colobopsis*, nine of *Camponotus* in the old classification; both type species not included). It might therefore be a question for future studies whether the diverse genus *Colobopsis*, which now comprises 94 species (Ward & al. 2016), is truly monophyletic or not. In the light of morphological characters only, the consideration might be allowed that a certain head morphology (wide head with distant frontal carinae and pronounced genae) may have served as a pre-adaptation for the evolution of phragmosis. Blaimer & al. (2015) studied *C. saundersi* which is a close relative of *Colobopsis sp. nRSA* (I.S. Druzhinina, C. Pretzer, unpublished molecular data). That the monophyletic clade *Colobopsis* of Blaimer & al. (2015) and Ward & al. (2016) corresponds to the taxon *Colobopsis Mayr*, 1861 depends on the assumption that the Mexican species “C. BCA01” is not only morphologically similar, but also closely related to the type species *C. truncata* from Europe. In addition, the assumed independent evolution of distinctive head shields in the *C. truncata* group and in the *C. saundersi* complex of the *C. cylindrica* group (H. Zettel & A. Laciny, unpubl.) further complicates the question of monophyly. These matters should be investigated in the course of future studies.

Acknowledgements

The work was supported by WWTF Project LS13-048 to ID. We thank the administration of KBFS and the UBD Research Committee for project approval and Brunei’s Forestry Department for permission to collect ants. We thank the staff of KBFS, especially Salleh Abdullah Bat, Teddy Chua, Masnah Mirasan, Rafhiah Kahar, Roshanizah Rosli, Rodzay Wahab, and Kuslan Temnakon for facilitating research and field-work in many ways. We also thank Mahmud Yussof, Director of Biodiversity, Research and Innovation Centre of Ministry of Primary Resources and Tourism, for permitting the export of specimens. We are thankful to Diane W. Davidson for introducing us to the diversity of *Colobopsis cylindrica* ants at KBFS and for passing down her knowledge on ecology of these organisms. Additional thanks are owed to all museums and institutions (e.g., MCSN Genova, MCZ Harvard, and NHM Los Angeles) which provided loans of specimens for comparison. We also wish to thank Christian Peeters, Georg Fischer, and an anonymous referee for their helpful comments and suggestions, as well as Hans-Leo Nemeschkal for his academic supervision of the first author and help with statistical analysis.

References

HIGASHI, S. 1974: Worker polyethism related with body size in a polydomous red wood ant, Formica (Formica) yessensis. – Journal of the Faculty of Science Hokkaido University Series VI. Zoology 19: 695-705.

LONDE, S., MOENN, T., CORNETTE, R., DEBAT, V., FISHER, B.L. & MOLET, M. 2015: Phenotypic plasticity and modularity allow for the production of novel mosaic phenotypes in ants. – Evo-Devo 6: art. 36.

Metscher, B.D. 2009: MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized tissues. – BioMed Central Physiology 9: art. 11.

