"Much more than a neck": karyotype differentiation between Dolichoderus attelaboides (FABRICIUS, 1775) and Dolichoderus decollatus F. SMITH, 1858 (Hymenoptera: Formicidae) and karyotypic diversity of five other Neotropical species of Dolichoderus LUND, 1831

Igor S. SANTOS, Cléa S. MARIANO, Jacques H.C. DELABIE, Marco A. COSTA, Antonio F. CARVALHO & Janisete G. SILVA

Abstract

Dolichoderus LUND, 1831 is the most species-rich and morphologically diverse genus in the Dolichoderinae subfamily and comprises more than 150 described species. The ants in this genus are mainly arboreal and are mostly found in tropical humid forests. In Brazil, there are 35 Dolichoderus species grouped in nine species complexes. Some of these species, such as those in the D. attelaboides and D. decollatus complexes, are large in overall size and share several common morphological characters, which suggests a close phylogenetic relationship among them. In this study, classical and molecular cytogenetic techniques were used to investigate the karyotype differentiation between Dolichoderus attelaboides (FABRICIUS, 1775) (D. attelaboides complex) and Dolichoderus decollatus F. SMITH, 1858 (D. decollatus complex). Also, species in the following complexes were analyzed cytogenetically for the first time, namely Dolichoderus lutosus (F. SMITH, 1858), Dolichoderus diversus EMERY, 1894, and Dolichoderus voraginosus MACKAY, 1993 (D. diversus complex), Dolichoderus bidens (LINNAEUS, 1758) (D. bidens complex), and Dolichoderus imitator EMERY, 1894 (D. imitator complex). Our results revealed a high karyotype divergence between D. attelaboides and D. decollatus, indicating that chromosome rearrangements most likely had an important role in the diversification of these complexes. The chromosome numbers analyzed in this study ranged from 2n = 10 to 2n = 58 and placed Dolichoderinae as the third most karyotypically diverse group known within Formicidae. The differences in the location of DNA clusters between the two species in the D. diversus complex may have originated from pericentric inversions during karyotype diversification within this complex. Molecular phylogenetic analyses using fragments of the cytochrome oxidase I (COI) and long-wavelength rhodopsin (LW Rh) genes indicated that chromosomal rearrangements have played an important role in karyotype evolution and diversification in Dolichoderus, unlike other ant genera that exhibit highly conserved karyotypes. We conclude that the smaller and more numerous chromosomes arose as a result of successive events of fission.

Key words: Neotropical ants, cytogenetics, Dolichoderinae.

Introduction

Dolichoderus LUND, 1831 is the most species rich and morphologically diverse genus in the Dolichoderinae subfamily. It comprises mostly arboreal ants found in tropical humid forests (SHATTUCK 1992, MACKAY 1993, CUEZZO 2003). The New World species, placed into 12 complexes, are widely distributed from southern Canada to northeastern Argentina (MACKAY 1993). In Brazil, 35 species have been reported so far distributed in the D. attelaboides, D. bidens, D. bispinosus, D. debilis, D. decollatus, D. diversus, D. imitator, D. laminatus, and D. rugosus complexes.
(MACKAY 1993, ORTIZ & FERNÁNDEZ 2011). Among these complexes, the *D. decollatus* and *D. attelaboides* complexes are noteworthy for their high morphological similarity among their species. However, the species within the *D. attelaboides* complex have an elongated vertex similar to a tubular neck. This vertex is the main character that allows distinguishing the species within the *D. attelaboides* complex from those species within the *D. decollatus* complex (MACKAY 1993).

According to MACKAY (1993), the Neotropical species of *Dolichoderus* belong to at least four distinct lineages that include 1) species of the former genus *Hypoclinea* MAYR, 1855 from the Neotropical region; 2) species of the former genus *Hypoclinea* from the Nearctic region and most species of the former genus *Monacis* ROGER, 1862; 3) species of the former genus *Monacis* of the complex *D. bispinosus*; and 4) species in the genus *Dolichoderus* sensu KEMPf (1972). Confirming previous evidence, SHATTUCK (1992) synonymized all the aforementioned genera based on morphological features present in both fossil and extant species. SHATTUCK (1992) suggested the monophyly of *Dolichoderus*, which was later corroborated by WARD & al. (2010) in a molecular phylogenetic study. The latter study included species within the former genera *Monacis, Hypoclinea*, and a species of *Dolichoderus* sensu KEMPf (1972). However, due to the limited number of *Dolichoderus* species included, the intrageneric relationships within this genus remained largely unresolved.

Despite the high morphological variation and high diversity within *Dolichoderus*, with more than 150 species described worldwide (BOLTON 2014), little is known about their cytot genetics and phylogeny. The only karyotypes reported for this genus are those of five species in the Asia-Pacific region (Australia (CROZIER 1968, IMAI & al. 1977), Indonesia (IMAI & al. 1984); Japan (IMAI 1969), and Malaysia (IMAI & al. 1983, GOŠI & al. 1982)). A wide range of chromosome numbers from 2n = 18 in *Dolichoderus* sp. (GOŠI & al. 1982) to 2n = 30 - 33 in *Dolichoderus thoracicus* (F. SMITH, 1860) (IMAI & al. 1983) has been described. This indicates that this genus has high karyotype diversity, a feature previously verified only in few genera within Formicidae such as in the ponerine genus *Neoponera* EMERY, 1901 with chromosome numbers ranging from 2n = 12 in *Neoponera unidentata* (MAYR, 1862) to 2n = 64 in *Neoponera verenae* FOREL, 1922 and in the myrmecine genus *Myrmecia* FABRICATIONIS, 1804 with karyotypes varying from 2n = 2 in *Myrmecia pilosula* F. SMITH, 1858 to 2n = 84 in *Myrmecia brevinoda* FOREL, 1910 (see LORITE & PALOMEOQUE 2010).

Cytogenetic studies have contributed significantly to the genetic characterization of Formicidae. Such studies have helped to distinguish species groups of controversial taxonomy (CROSLAND & CROZIER 1986, CROSLAND & al. 1988, MARIANO & al. 2006, SANTOS & al. 2010, MARIANO & al. 2012) and, importantly, cytot genetic studies have contributed to the knowledge of chromosome structure and chromosomal rearrangements involved in the karyotype evolution within this family (GOOSDMAN & al. 2008, LORITE & PALOMEOQUE 2010).

So far, karyotype information is available solely for a single Neotropical species within *Dolichoderus*, namely *Dolichoderus voraginosus* MACKAY, 1993 (AGUIAR & al. 2011). In the present study, we carried out cytot genetic and molecular analyses on *D. attelaboides* (FABRICATIONIS, 1775), *D. decollatus* F. SMITH, 1858, *D. lutosus* (F. SMITH, 1858), *D. bidens* (LINNAEUS, 1758), *D. diversus* EMERY, 1894, *D. voraginosus*, and *D. imitator* EMERY, 1894. The recovered phylogeny was used as a framework to discuss our hypotheses on karyotype evolution for the aforementioned species. The results reported in this study will lend support to the discussion of karyotype evolution in *Dolichoderus*.

Material and methods

Sampling: Colonies of the seven species were collected in experimental fields at the Comissão Executiva do Plano da Lavoura Cacaueira-CEPLAC, Ilhéus, state of Bahia, Brazil (14° 45' S, 39° 13' W). All sampling areas were within a 20-year-old cocoa grove shaded by exotic legume trees (*Erythrina fusca* and *Poeppiggiana*, Fabaceae) and fruit trees (*Artocarpus heterophyllus*, Moraceae, and *Musa* spp., Musaceae) (for description and information about the experimental cocoa fields, see DELABIE & al. 2007).

The *Dolichoderus* ants included in this study were identified to the species level using the key included in the revision of the Neotropical species of the genus by MACKAY (1993). All the *Dolichoderus* we studied are true arboreal, except for *D. imitator* which is the only Neotropical species living on the ground, as far as we know. Both *D. attelaboides* and *D. decollatus* are large species which build in the vegetation broad nests made of dead and living leaves and organic material where a numerous population lives; *D. bidens* is also a rather large species that lives generally on shrubs where it forms polydomous nests made by dozens of similar structures protected by a cartoon wall in the back of living leaves (DELABIE & al. 1991); the populations of colonies of the other species, *D. diversus, D. lutosus* and *D. voraginosus*, are small, with less than 100 individuals, and are generally found in hollow rotten fruit and trunk cavities, as well as in the roots of epiphytic bromeliads. All of these ants tend sap-sucking Homoptera (DELABIE 2001). Voucher specimens of each colony were deposited at the Laboratório de Mirmecologia (CPDC Collection), CEPEC-CEPLAC, Ilhéus, Bahia, Brazil.

Conventional cytot genetic analysis: Mitotic metaphases were obtained from cerebral ganglia of prepupae following IMAI & al. (1988) and subsequently stained with Giemsa for the determination of chromosome number and morphology. Metaphases were photographed using a CX-41 microscope equipped with a digital camera C-7070 (Olympus, Tokyo, Japan). A minimum of five metaphases per individual was analyzed. The classification of the chromosomes followed LEVAN & al. (1964).

Fluorochrome staining: Chromomycin A3 ([CMA3] / 4', 6-diamidino-2- phenylindole (DAPI]) staining followed SCHWEIZER (1976). After three days, the slides were observed using an epifluorescence microscope (DM2A. Leica Microsystems) and the images were captured using IM50 software (Leica Microsystems Imaging Solutions Ltd.).

Fluorescent in situ hybridization: Fluorescent in situ Hybridization (FISH) followed MOSCONE & al. (1996) with the modifications described by SANTOS & al. (2010). The ITS-1 probe was amplified from the 45S rDNA cluster using the primers 5'-TCAACACGGGACCCAGGCC-3' (forward-18S) and 5'-CGATGATCAAGTGTCCTGCA - 3' (reverse-5.8 S) described by PILGRIM & al. (2002).
Tab. 1: Taxa analyzed herein and respective GenBank accession numbers.

<table>
<thead>
<tr>
<th>Species</th>
<th>COI</th>
<th>LWR</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolichoderus attelaboides</td>
<td>KU187246</td>
<td>KU232982</td>
<td>present study</td>
</tr>
<tr>
<td>Dolichoderus decollatus</td>
<td>KU187247</td>
<td>KU232983</td>
<td>present study</td>
</tr>
<tr>
<td>Dolichoderus bidens</td>
<td>KU187249</td>
<td>KU232988</td>
<td>present study</td>
</tr>
<tr>
<td>Dolichoderus debilis</td>
<td>KU187250</td>
<td>KU232986</td>
<td>present study</td>
</tr>
<tr>
<td>Dolichoderus voraginosus</td>
<td>KU187251</td>
<td>KU232992</td>
<td>present study</td>
</tr>
<tr>
<td>Dolichoderus diversus</td>
<td>KU187252</td>
<td>KU232991</td>
<td>present study</td>
</tr>
<tr>
<td>Dolichoderus lutosus</td>
<td>KU187254</td>
<td>KU232990</td>
<td>present study</td>
</tr>
<tr>
<td>Dolichoderus quadridenticulatus</td>
<td>KU187255</td>
<td>KU232989</td>
<td>present study</td>
</tr>
<tr>
<td>Dolichoderus imitator</td>
<td>KU187257</td>
<td>KU232984</td>
<td>present study</td>
</tr>
<tr>
<td>Azteca beltii (voucher z256)</td>
<td>JQ867689</td>
<td>JQ868413</td>
<td>PRINGLE & al. (2012)</td>
</tr>
<tr>
<td>Azteca ovaticeps (voucher B224)</td>
<td>JQ867544</td>
<td>JQ868268</td>
<td>PRINGLE & al. (2012)</td>
</tr>
<tr>
<td>Forelius pruinosus (voucher: CASENT0106039)</td>
<td>HQ207390</td>
<td>EF013574</td>
<td>LUCKY (2011)</td>
</tr>
<tr>
<td>Leptomyrmex unicolor (voucher: CASENT0127091)</td>
<td>HQ207384</td>
<td>HQ207452</td>
<td>LUCKY (2011)</td>
</tr>
<tr>
<td>Leptomyrmex wibardi (voucher: CASENT0127059)</td>
<td>HQ207388</td>
<td>HQ207457</td>
<td>LUCKY (2011)</td>
</tr>
</tbody>
</table>

Tab. 2: Chromosome number, karyotype formula, CMA3/ DAPI bands, and ribosomal sites in the Dolichoderus species studied herein.

<table>
<thead>
<tr>
<th>Species</th>
<th>2N</th>
<th>Karyotype formula</th>
<th>Differential fluorochrome staining (CMA3/ DAPI bands)</th>
<th>FISH (ITS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolichoderus lutosus</td>
<td>10</td>
<td>2k = 4 M + 6 SM</td>
<td>Centromeric bands in all chromosomes and an interstitial band in the chromosome pair 2</td>
<td>Interstitial ribosomal cluster in the chromosome pair 2</td>
</tr>
<tr>
<td>Dolichoderus bidens</td>
<td>18</td>
<td>2k = 6 M + 12 SM</td>
<td>Centromeric bands in all chromosomes and an interstitial band in the chromosome pair 1</td>
<td>Interstitial ribosomal cluster in the chromosome pair 1</td>
</tr>
<tr>
<td>Dolichoderus voraginosus</td>
<td>20</td>
<td>2k = 14 M + 6 SM</td>
<td>Centromeric bands in all chromosomes. The chromosome pair 1 lacks the telomeric band.</td>
<td>Telomeric ribosomal cluster in the chromosome pair 1</td>
</tr>
<tr>
<td>Dolichoderus diversus</td>
<td>22</td>
<td>2k = 10 M + 12 SM</td>
<td>Centromeric bands in all chromosomes and an interstitial band in the chromosome pair 1</td>
<td>Interstitial ribosomal cluster in the chromosome pair 1</td>
</tr>
<tr>
<td>Dolichoderus imitator</td>
<td>38</td>
<td>2k = 6 M + 28 SM + 4 A</td>
<td>Intersetial bands in the chromosome pair 1</td>
<td>Interstitial ribosomal cluster in the chromosome pair 1</td>
</tr>
<tr>
<td>Dolichoderus decollatus</td>
<td>38</td>
<td>2k = 6 M + 32 SM</td>
<td>Intersetial bands in the chromosome pair 2</td>
<td>Interstitial ribosomal cluster in the chromosome pair 2</td>
</tr>
<tr>
<td>Dolichoderus attelaboides</td>
<td>58</td>
<td>2k = 2 M + 50 SM + 6 A</td>
<td>Terminal band in the long arm of the chromosome pair 2</td>
<td>Ribosomal cluster in the long arm of the chromosome pair 2</td>
</tr>
</tbody>
</table>

Genomic DNA extraction and gene amplifications:
Genomic DNA was extracted from one leg of a single specimen of each species included in this study using the DNeasy™ Tissue Kit (Qiagen Inc., Valencia, CA) and followed the manufacturer's instructions. For the molecular phylogenetic analysis two different gene regions were amplified. The first was a mitochondrial region (cytochrome oxidase subunit I gene – COI) and the second a nuclear region (long wavelength rhodopsin – LWR) using primers LCO1490 / HCO2198 for COI (FOLMER & al. 1994) and LR143F / LR639ER (WARD & DOWNIE 2005) respectively. DNA amplification was carried out in 25µL volume reactions: 12.45 µL ultra-pure water, 2.5 µL 10X buffer, 3.0 µL 25 mM MgCl2, 2.5 µL 100 mM dNTP, 1.25 µL of each primer (20 mM), 3 µL of DNA, and 0.3 µL Taq DNA polymerase (Promega). The gene amplification consisted of an initial step at 94 °C for 1 min followed by 39 cycles (denaturation at 94 °C for 1 min, annealing at 52 °C for both genes for 1 min, and extension at 72 °C for 1 min) and a final extension step at 72 °C for 10 min. Amplifications were performed using an Eppendorf® Mastercycler thermocycler.

Phylogenetic analysis: Bayesian analysis was performed using the program MrBayes 3.1.2 (HUelsenbeck & Ronquist 2001). Data from both genes were concatenated in a matrix with a total of 1,135 base pairs. The best nucleo-
tide substitution model was determined for each codon partitioned gene region using the Akaike information criterion implemented in the program jModelTest 2.1.4 (DARIBA & al. 2012). The best fit models inferred for COI and LW Rh were GTR + I + G and HKY + I, respectively. The Bayesian analyses were performed with two simultaneous sets of four chains using the default values for search MrBayes 3.1.2. Searches were made in two simultaneous and independent runs of the Markov Chain Monte Carlo (MCMC) and for 10 million generations with trees sampled every 1,000 generations. Convergence of the two MCMC independent runs and burnin were accessed in Tracer 1.6 (RAMBAUT & al. 2014). Trees were edited in FigTree v1.4.2 (RAMBAUT 2009). DNA sequences used as outgroups were obtained from GenBank (Tab. 1).

Results
Our analyses revealed substantial variation in chromosome number and morphology in the karyotypes of the species studied (Fig. 1, Tab. 2). Chromosome number ranged from 2n = 10 in Dolichoderus lutosus to 2n = 58 in D. attelaboides, the latter being the largest chromosome number observed within the Dolichoderinae to date. The karyotypes analyzed herein were predominantly submetacentric, except for D. voraginosus (2n = 20), whose karyotype consisted of mostly metacentric chromosomes.

CMA\(^3\) / DAPI bands were located in the pericentric regions of chromosomes in Dolichoderus lutosus, D. diversus, D. voraginosus, and D. bidens (Fig. 2: A1, A2, A3, and A4, respectively). In D. attelaboides and D. decollatus, the CMA\(^3\) / DAPI band was located on the second chromosome pair. In D. attelaboides, the band extends along the entire length of the short chromosome arms and part of the long arms. FISH results revealed that there are only two ribosomal DNA clusters and that the clusters are located on homologous chromosomes in the studied species. The ribosomal DNA clusters were detected on pair 1 in D. voraginosus, D. diversus, D. bidens, and D. imitator (Fig. 2: B2, B3, B4, and B7, respectively) and on pair 2 in D. lutosus, D. attelaboides, and D. decollatus (Fig. 2: B1, B5, B6). Ribosomal sites were variable in size and location. Small terminal bands were detected on chromosome pair 1 in D. voraginosus. Interstitial bands were detected in D. lutosus, D. bidens, D. diversus, D. decollatus, and D. imitator. Coincidentally with the CMA\(^3\)/ DAPI results, D. attelaboides showed larger bands encompassing the entire extension of the short arm and part of the long arm on both chromosomes of pair 2.

The Dolichoderus species included in this study were recovered as a clade with strong support (PP = 1) in the molecular phylogeny (Fig. 3). These species were separated into three major clades. The first clade clustered Dolichoderus attelaboides and D. decollatus together with strong support (PP = 1). The second clade comprised D. bidens plus D. quadridenticalis (PP = 1) and D. diversus plus D. voraginosus, (PP = 1), D. lutosus (PP = 0.94), and D. debilis (PP = 1). The third clade comprised only D. imitator (PP = 0.98).

Discussion
The high chromosome number variation, considering the data reported herein and in LORITE & PALOMEQUE (2010), makes Dolichoderus the most cytogenetically diverse genus across the 14 genera already studied within the Dolichoderinae (Tab. 3) (LORITE & PALOMEQUE 2010, CARDOSO & al. 2012).
Fig. 3: Phylogram of *Dolichoderus* based on Bayesian analysis of a concatenated matrix including partial sequences of the Cytochrome Oxidase I and Long-Wavelength Rhodopsin genes. Numbers in the nodes represent Bayesian posterior probabilities. DNA sequences for the genera *Azteca*, *Forelius*, and *Leptomyrmex* were obtained from GenBank.

Table 3: Variation on the chromosome number for 14 of the 28 described genera within *Dolichoderinae* (three of the genera listed by Lorite & Palomeque (2010) were synonymized and herein we also included the genus *Azteca*). Data from Lorite & Palomeque (2010) and Cardoso et al. (2012) (for the genus *Azteca*). * Only morphospecies; ** including species analyzed in this paper; *** only four species described, 11 are morphospecies (all have 2n = 18); **** four, out of the five species listed here, are morphospecies.

Tab. 3: Variation on the chromosome number for 14 of the 28 described genera within *Dolichoderinae* (three of the genera listed by Lorite & Palomeque (2010) were synonymized and herein we also included the genus *Azteca*). Data from Lorite & Palomeque (2010) and Cardoso et al. (2012) (for the genus *Azteca*). * Only morphospecies; ** including species analyzed in this paper; *** only four species described, 11 are morphospecies (all have 2n = 18); **** four, out of the five species listed here, are morphospecies.

It is noteworthy that, even though *Iridomyrmex* Mayr, 1862 is the most cytogenetically studied genus in this subfamily (Lorite & Palomeque 2010), only three distinct karyotypes have been reported for this genus, with chromosome number ranging from 2n = 14 in *Iridomyrmex* sp. to 2n = 48 in *Iridomyrmex anceps* (Roger, 1863) (Imai & al. 1977, Imai & al. 1984).

The significant karyotype diversity found among *Dolichoderus* species might be explained by an earlier origin for this group compared with the other genera within *Dolichoderinae*. The chromosome variation reported herein also corroborates the hypothesis that older ant groups tend...
to have more diversified karyotypes as has been reported for some poneroid species since they have had more time to evolve and diversify (MARIANO & al. 2012, LORITE & PALOMEQUE 2010, BRADY & al. 2006, MOREAU & al. 2006). According to MOREAU & BELL (2013), their molecular phylogeny suggests that Dolichoderus emerged approximately 60 million years ago and is in a more basal position in regards to most genera in Dolichoderinae such as Iridomyrmex MAYR (~ 20 M.A.), Tapinoma FOERSTER, 1850 (~ 30 M.A.), and Linepithema MAYR, 1866 (~ 15 M.A.). The most recent common ancestor of Dolichoderus is older than other related genera in the subfamily Dolichoderinae, and this more ancestral condition was first suggested by BROWN (1973) and recently has been corroborated by the molecular data of WARD & al. (2010).

The significant karyotype variation found in Neotropical Dolichoderus is similar to what has been reported for other Neotropical genera such as Gnamptogenys ROGER, 1863, Pseudomyrmex LUND, 1831, and Neoponera EMERY, 1901 (MARIANO & al. 2012). Moreover, our data place Dolichoderinae as the third most karyotypically diverse group known in Formicidae, following the subfamilies Ponerinae and Myrmicinae (LORITE & PALOMEQUE 2010). Before the present study, the number of species with known karyotypes (about 50 species), along with the previously reported karyotype diversity, indicated that Dolichoderinae showed little variation in chromosome number (LORITE & PALOMEQUE 2010). However, it should be emphasized that previous studies were restricted to species of the Indomalayan and Australian regions where, within this subfamily, apparently there is a lower intrageneric karyotype diversity (CROZIER 1968, IMAI 1969, IMAI & al. 1977, GOÑI & al. 1982, IMAI & al. 1983, IMAI & al. 1984).

Our molecular analysis reveals some important aspects regarding species complexes within Dolichoderus. Despite being phylogenetically closely related (Fig. 3; also see Appendix S1 and Appendix S2, as digital supplementary material to this article, at the journal’s web pages), D. attelaboides and D. decollatus have distinct karyotypes regarding number, morphology, and chromosomal location of the rDNA cluster. Our data suggest that karyotype changes may have had an important role in the diversification of the species within the D. attelaboides and D. decollatus complexes similar to what has been reported for other Formicidae taxa (IMAI & al. 1994, MARIANO & al. 2006, SANTOS & al. 2010). Among the chromosome rearrangements observed in ants, centric fission seems to be more common and therefore most likely constitutes the main mechanism in shaping chromosome evolution. According to the Minimum Interaction Theory (IMAI & al. 1988), such mechanism of chromosome change would be favoured as it reduces genetic risks of deleterious reciprocal translocations by producing smaller and more numerous chromosomes. However, there are other potential alternative explanations for our results as well. It has been hypothesized that selection on social insects would strongly favor high overall rates of recombination allowing for the genetic diversification of offspring, for example, by an increase in the number of chromosomes (SHERMAN 1979, SEGNER 1983) or an increase in the intra-chromosomal recombination rate (WILFERT & al. 2007). Thus, selection on recombination could indirectly select for increased chromosome number and genetic diversity is known to increase the resistance to parasites or stabilize the division of labor (SHERMAN 1979). Also, genetic drift could account for a rapid change in chromosome number following a reduction in population size. However, no reduction in chromosome number variation has been observed in ant species with a wider geographic range, thus suggesting that drift cannot be considered as the main mechanism of chromosome number evolution (ROSS & al. 2014). These authors caution, though, that there are not conclusive analyses and the role of historical population in the current distribution should also be taken into account. Regarding the establishment of new chromosome variants, meiotic drive, the nonrandom segregation of chromosomes during female meiosis, has been considered the factor with the strongest potential to influence their fixation in mammals (PÁRDOS MANUEL DE VILENA & SAPIENZA 2001).

Most karyotyped species in this genus, including the species in the present study, fall within the range of chromosome numbers from 2n = 18 in Dolichoderus sp. (GOÑI & al. 1982) and D. bidens to 2n = 30 - 33 in Dolichoderus thoracicus (F. SMITH, 1860) (see IMAI & al. 1983). Chromosome numbers within this range are also found in the outgroup, 2n = 24 for Leptomyrmex (IMAI & al. 1977) and Azteca (CARDOSO & al. 2012). Given the present analysis, it is reasonable to assume that the higher chromosome numbers found within Dolichoderus most likely represent an ancestral state.

In Dolichoderus attelaboides, the decreased number of metacentric chromosomes could have resulted from successive events of centric fission and pericentric inversion. The differences in the location of the rDNA cluster between D. attelaboides and D. decollatus may have originated from pericentric inversions. The differences may even have resulted from a centric fission in an ancestral karyotype involving a chromosome pair similar to the second pair in D. decollatus. In this latter case, the event must have been followed by in tandem growth of the heterochromatin in the short arm, which resulted in a submetacentric morphology in D. attelaboides. Alternatively, the decrease observed in the number of metacentric chromosomes could have been due solely to fission. The short arm of the second pair in D. attelaboides could have been generated by rDNA amplification before an event of centric fission based on the fact that the size of the NOR region in this species is larger than that observed in other Dolichoderus species. This considerable karyotype divergence between species of the D. attelaboides and D. decollatus complexes adds new characters that strengthen their classification into distinct groups as proposed by MACAY (1993). Considering the likely proximity between these two complexes, their differentiation might have resulted from chromosome rearrangements.

Species within the D. diversus complex clustered together with species of the D. bidens complex in our molecular analysis (Fig. 3), suggesting that the former is not a monophyletic group. A high karyotype diversity was observed among the species analysed within the diversus complex (Dolichoderus lutosus, D. diversus, and D. voraginius) with chromosome numbers ranging from 2n = 10 to 2n = 22. For instance, D. diversus and D. voraginius have approximately twice as many chromosomes as D. lutosus. Within this group, D. diversus and D. voraginius have more similar karyotypes in all aspects, thus reinforcing their
close relationship as seen in our phylogenetic analyses, in which they are clustered together with strong support (PP = 1).

The pattern of numerical and structural variation observed in the clade containing the *D. diversus* + *bidens* + *debilis* complexes also suggests karyotype evolution by centric fission followed by in tandem growth of heterochromatin, according to the model of karyotype evolution of ants proposed by Imai & al. (1988). Besides centric fissions, pericentric inversions seem to have contributed to the karyotypic diversification in this group, since the locations of the rDNA cluster differ among species. Despite the karyotype and molecular diversity revealed by this study, species within the *D. diversus* complex share several characteristics such as behavior (lack of aggressiveness), nest architecture (opportunistic nesting), and morphology (small to medium body size and alitrunk shape). On the other hand, *Dolichoderus bidens* (*bidens* complex) showed a karyotype very close to those of *D. diversus* and *D. voraginosus*, and the location of its rDNA cluster is similar to *D. diversus*, which is corroborated by our molecular analysis that placed them in the same clade. *Dolichoderus bidens*, together with *D. lutosus* and *D. diversus*, used to belong to the former genus *Hypoclinea* and was placed in the *bidens* complex in the most recent revision of the Neotropical species of *Dolichoderus* (MacKay 1993). However, *D. bidens* shows differences in behavior (aggressive when the nest is disturbed) and nesting habits (polydomous carton nests), which could justify the placement of this species in a different group.

The basal (i.e., earliest branching) position of *Dolichoderus imitator* (*imitator* complex) in our phylogenetic tree corroborates its placement into a separate species group such as proposed by MacKay (1993). *Dolichoderus imitator* is the single species in the *imitator* complex (MacKay 1993) and has terricolous habits in contrast with the other Neotropical species of the genus, which are all arboreal. The karyotype of this species is similar to that of *D. decollatus* (*decollatus* complex).

The cyogenetic and molecular data were essential to better elucidate the relationship between the *D. attelaboides* and *D. decollatus* complexes. The karyotype differences reported herein show that there is more than simply a neck separating these two complexes. Moreover, the karyotype characterization also revealed marked genetic differences among species within the *D. diversus* complex and allowed us to propose an explanation for karyotype evolution of this group and the other species analyzed in this study. This first cyogenetic study of Neotropical *Dolichoderus* shows that this genus also has high karyotype and genetic diversity along with its large morphological diversity. Additional cyogenetic and molecular studies, including other species, should also contribute to a better understanding of mechanisms involved in the karyotype evolution of this genus.

Acknowledgements

We would like to thank José Raimundo Maia dos Santos, José Crispin Soares do Carmo, José Abade (in memoriam), and Benoit Jahyny for their help in field collections. We would also like to thank Carter Robert Miller for reviewing the manuscript. Thanks are also due to Birgit Schlick-Steiner, Heath Blackmon, and an anonymous reviewer for their helpful suggestions on an earlier version of this manuscript. This study was supported by the projects RED0012/2012 FAPESB and PRONEX FAPESB/CNPq PNN011/2009: "Rede Multidisciplinar de Estudos sobre Formigas Poneromorfas do Brasil". CSFM, JHCD, MAC, and JGS acknowledge their research fellowships from CNPq.

References

FELMER, O., BLACK, M., HOEH, W., LUTZ, R. & VRIJHOEK, R. 1994: DNA primers for amplification of mitochondrial cyto-
chrome c oxidase subunit I from diverse metazoan invertebrates. – Molecular Marine Biology and Biotechnology 3: 294-297.

IMAI, H.T., TAYLOR, R.W. & CROZIER, R.H. 1994: Experimental bases for the minimum interaction theory. I. Chromosome evolution in ants of the Myrmecia pilosula species complex (Hy-

MARiano, C.S., POMPolo, S.G., BORGES, D.S. & DELABIE, J.H.C. 2006: Are the Neotropical ants Pachycondyla crenata (ROGER, 1861) and Pachycondyla mesenotalis (SANTSCHI, 1923) (Hy-

MARiano, C.S., POMPolo, S.G., SILVA, J.G. & DELABIE, J.H.C. 2012: Contribution of cytogenetics to the debate on the paraphyly of Pachycondyla spp. (Hymenoptera: Formicidae: Pone-

MOREAU, C.S. & BELL, C.D. 2013: Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, di-

ORTIZ, C.M. & FERNÁNDEZ, F. 2011: Hormigas del genero Dolicho-
dochirus LUND (Formicidae: Dolichoderinae) en Colombia. III Monografías de Fauna de Colombia. – Universidad Na-
cional de Colombia, Bogotá, 118 p.

PAORDO-MANUEL, D.V.F. & SAPIENZA, C. 2001: Female meio-
sis drives karyotypic evolution in mammals. – Genetics 159: 1179-1189.

PRINGLE, E.G., RAMIREZ, S.R., BONEBRACE, T.C., GORDON, D.M. & DIRZO, R. 2012: Diversification and phylogeographic structure in widespread Azteca plant-ants from the northern Neo-
tropics. – Molecular Ecology 21: 3576-3592.

ROSS, L., BLACKMON, H., LORITE, P., GOKHMAN, V.E. & HARDY, N.B. 2015: Recombination, chromosome number and eusoci-

SHREY, J. 2013: Conditional relatedness, recombination, and the chromosome numbers of insects. In: RHODIN, A.G.J. & MI-

SHATTUCK, S.O. 1992: Higher classification of the ant subfami-

SHERMAN, P.W. 1979: Insect chromosome numbers and eusoci-

SHERMAN, P.W. 1979: Insect chromosome numbers and eusoci-

WARD, P.S. & DOWNE, D.A. 2005: The ant subfamily Pseudo-
ymyrmeinae (Hymenoptera: Formicidae): phylogeny and evo-