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The tight genome size of ants: diversity and evolution
under ancestral state reconstruction and base
composition
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The mechanisms and processes driving change and variation in the genome size (GS) are not well known, and only
a small set of ant species has been studied. Ants are an ecologically successful insect group present in most distinct
ecosystems worldwide. Considering their wide distribution and ecological plasticity in different environmental
contexts, we aimed to expand GS estimation within Formicidae to examine distribution patterns and variation in
GS and base composition and to reconstruct the ancestral state of this character in an attempt to elucidate the
generalized pattern of genomic expansions. Genome size estimates were generated for 99 ant species, including
new GS estimates for 91 species of ants, and the mean GS of Formicidae was found to be 0.38 pg. The AT/GC ratio
was 62.40/37.60. The phylogenetic reconstruction suggested an ancestral GS of 0.38 pg according to the Bayesian
inference/Markov chain Monte Carlo method and 0.37 pg according to maximum likelihood and parsimony methods;
significant differences in GS were observed between the subfamilies sampled. Our results suggest that the evolution
of GS in Formicidae occurred through loss and accumulation of non-coding regions, mainly transposable elements,
and occasionally by whole genome duplication. However, further studies are needed to verify whether these changes
in DNA content are related to colonization processes, as suggested at the intraspecific level.

ADDITIONAL KEYWORDS: AT/GC ratio — character reconstruction — DNA content — evolution — phylogeny —
transposable elements — whole genome duplication.

INTRODUCTION is a simple linear collection of genes, making the old
interpretation of GS variation as ‘paradoxical’ obsolete
(Gregory, 2001).

Genome size is also known as DNA content, amount
of DNA or DNA C-value. This is widely studied
in plants, and the leading reports on variation in
GS between species, in addition to references on
standardization of procedures for GS quantification,
have concentrated mainly on these organisms (e.g.
Bennett et al., 2003; Dolezel & Bartos, 2005; Gregory,
2005; Dolezel et al., 2007; Bennett & Leitch, 2011,
2012; Vu et al., 2015; Clark et al., 2016; Hidalgo et al.,
2017a, b; Pellicer et al., 2018). For instance, ‘The Plant
DNA C-values Database’ (http:/data.kew.org/cvalues/)
currently contains data for 8510 plant species, whereas
the haploid DNA contents (C-values, in picograms) are
*Corresponding author. E-mail: maykonpcristiano@gmail.com currently available for only 6222 animal species (3793

Although genome size (GS) is a fundamental
characteristic of an organism, the mechanisms and
processes driving variation and evolution of this
trait are poorly understood (Gregory, 2005; Bennett
& Leitch, 2011; Kang et al., 2014). Genome size in
eukaryotes varies by > 200 000-fold (Gregory, 2001),
without any apparent correlation with either the
complexity of the organism or the number of genes
(Petrov, 2001). This lack of correlation was originally
called the ‘C-value enigma’ or the ‘C-value paradox’
(Thomas, 1971), but the current understanding of the
eukaryotic genome does not support the idea that it
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vertebrates and 2429 invertebrates), with insects
representing 21.6% of this total (Gregory, 2020).

Despite our expanded understanding of genomes
through new sequencing technologies, the mechanisms
and processes that drive changes in GS are still
poorly understood, and it is still unclear why there
is astonishing variation among organisms, especially
between closely related species. Some studies have
associated GS variation between closely related taxa
with the number of chromosomes (Ardila-Garcia &
Gregory, 2009; Cardoso et al., 2012), although other
studies have not shown a similar correlation (Gregory,
2001; Tavares et al., 2012). In addition, mutations,
recombination and the accumulation or deletion of
non-coding DNA have also been proposed as factors
in GS variation and are considered to be the driving
forces for species diversification (El-Shehawi &
Elseehy, 2017).

Generally, an increase in GS is, in many organisms,
related to polyploidy events (Adams & Wendel, 2005),
the amount of heterochromatin (Lopes et al., 2009;
Tavares et al., 2010; Cardoso et al., 2012), amplification
of non-coding repetitive DNA (Kidwell, 2002; Vieira
et al., 2002) and other repetitive genome sequences
(Gregory & Hebert, 1999; Petrov, 2001; Cardoso et al.,
2018). Moreover, a positive correlation between GS
and base composition, mainly the GC content, has
been found within several groups of vertebrates (e.g.
Vinogradov & Borkin, 1993; Vinogradov, 1994, 1998),
bacteria (Guo et al., 2009; Nishida, 2012; Zhang & Gao,
2017) and in some monocot plants (Li & Du, 2014).
However, studies regarding base composition and the
effect on GS variation in other groups are still lacking
(Li & Du, 2014), as they are in invertebrates.

In a recent report, Alfsnes et al. (2017) analysed
the patterns of GS variation among organisms with
different levels of taxonomic relatedness in the two
major arthropod groups: crustaceans (subphylum:
Crustacea) and insects (class: Insecta), based on
openly available data. They found that the main
causes of expansion of GS are proliferation of non-
coding elements and/or duplication events. However,
for other groups of organisms, such as ants, these
patterns are somewhat speculative; there are only two
studies involving a large number of species that have
attempted to elucidate GS variation in Formicidae and
the mechanisms of genome evolution (Tsutsui et al.,
2008; Ardila-Garcia et al., 2010). Given that these
authors have had different goals, distinct protocols
have been applied to estimate the GS values. Thus, in
order to minimize errors in comparison, a standardized
protocol was established to obtain an adequate
suspension of nuclei for flow cytometry (FCM) analyses
in ants (Moura et al., 2019; 2020). They also proposed
that the variation in GS could be applied to population
studies and that variations in GS among populations

are likely to be related to stress experienced during
the colonization of new environments.

In this study, we first expand the GS database of the
family Formicidae, specifically within subfamilies, to
verify the amplitude of variation of this trait. Second,
we establish a protocol for the determination of base
composition through flow cytometry in ants to examine
the patterns of distribution and variation of GS and
base composition among taxa. Third, we correlate and
provide a phylogenetic perspective on GS evolution
in Formicidae by reconstructing ancestral character
states.

MATERIAL AND METHODS
COLONY SAMPLING

Colonies of different ant species were collected during
several field expeditions. The colonies were detected
visually, both by observation of individuals and by
identification of the nest entrance. A sample or the
entire colony was collected as described by Cardoso et al.
(2011), transported and kept in laboratory conditions
until FCM analyses. In other cases, several individuals
from the same colony were collected and transported
to the laboratory for immediate use in experimental
procedures. The samples were collected in a wide
diversity of environments in the Brazilian states of
Tocantins (TO), Bahia (BA), Minas Gerais (MG), Rio
de Janeiro (RJ), Santa Catarina (SC) and Rio Grande
do Sul (RS), and in total, individuals belonging to 174
colonies were collected (Supporting Information, Table
S1). Vouchers of each collected species were stored in
absolute alcohol, assembled and sent for identification
by Dr Rodrigo Feitosa, at the Universidade Federal do
Parand, and MSc. Jdlio Chaul, at the Universidade
Federal de Vigosa. Specimens that had not yet been
identified at the species level were identified at the
maximum hierarchical level of genus and have been
described in the present study followed by ‘sp.’. All
vouchers have been deposited in the ‘Cristiano and
Cardoso Myrmecology Colletion’ (CC-LGEP) of the
Laboratério de Genética Evolutiva e de Populagoes, at
the Universidade Federal de Ouro Preto.

FLOW CYTOMETRY ANALYSES
Estimation of total DNA content

The flow cytometry experiments were performed
following the protocol established by Moura et al.
(2020). Briefly, the nuclear DNA content of the
target species was measured using Drosophila
melanogaster (Meigen, 1830) as the internal standard
(1C = 0.18 pg). Galbraith lysis buffer was used for the
subfamilies Dolichoderinae, Formicinae, Myrmicinae
and Pseudomyrmecinae; LBO1 buffer was used for the
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subfamilies Dorylinae, Ectatomminae and Ponerinae
(see Moura et al., 2020). Heads of adult ant workers
and the internal standard were cut with a scalpel blade
and immersed in 100-300 pL of the buffer in a 1.5 mL
microtube and ground to release the cell nuclei. Next,
600 pL of the buffer was added to the solution, and
the solution was filtered through a 40 pm nylon mesh
(Becton Dickinson) and stained with the addition of
6.5 pL of propidium iodide (PI) solution and 3.5 pL of
RNAse. The samples were stored at 4 °C in the dark
and analysed within 1 h after preparation.

The analysis was performed on a FACSCalibur
(Becton Dickinson) cytometer equipped with a laser
source (488 nm) at the Universidade Federal de
Ouro Preto, and histograms were obtained with CELL
QUEST software. For each sample, > 10 000 nuclei
were analysed for their relative fluorescence intensity.
Three independent replications (i.e. three individuals
per colony) were conducted, and histograms with a
coefficient of variation > 5% were rejected, in which
case a new specimen was measured. Histograms were
analysed using FLOWING v.2.5.1 software (http://
www.flowingsoftware.com). The GS of each specimen
was calculated using the 1C-value of D. melanogaster,
and the values were obtained according to equation
from the study by Dolezel & Bartos (2005). A general
average was obtained per species sampled.

Additional GS data for 79 specimens belonging
to 67 ant species were extracted from the Animal
Genome Size Database (Gregory, 2020) of previously
published studies (Li & Heinz, 2000; Johnston et al.,
2004; Sirvié et al., 2006; Tsutsui et al., 2008; Ardila-
Garcia et al., 2010; Cardoso et al., 2012; Aguiar et al.,
2016) and two GS values for the outgroup species, Apis
mellifera (Linnaeus, 1748) and Chalybion californicum
(Saussure, 1867).

Determination of genomic AT and GC base
composition

The mean AT/GC ratio was calculated for some species
following the protocol established by Schwencke et al.
(1998) for plants. Initially, the total nuclear content
of these species was determined according to the
procedure described above. An additional sample was
treated with 4,6-diamidino-2-phenylindole (DAPI)
to stain AT-rich regions of the genome specifically.
Drosophila melanogaster was also used as an
internal standard in these estimates because its base
composition has already been determined (AT = 59%,
GC = 41%; Danilevskaya et al., 1991; Adams et al.,
2000; Ahuja & Neale, 2005; Soares, 2012).

The analysis was performed on a FACSCanto II
(Becton Dickinson) cytometer equipped with an
ultraviolet lamp (388 nm) at the Universidade Federal

de Juiz de Fora, and > 10 000 nuclei were analysed
for each sample. Three independent replications
were conducted, and histograms with a coefficient
of variation > 5% were rejected. Histograms were
analysed as aforementioned. The AT composition
of the target species was determined using the
following formula described by Godelle et al. (1993):
ATsample (%) = ATinternal standard (%) X (RDAPI/RPI)%’ Where RPI
is the ratio of sample fluorescence intensity relative
to the standard using the PI fluorochrome, and R,
is the DAPI ratio. The composition of GC bases was
determined as follows: GC (%) = 100% - AT (%), as
suggested by Bogunic et al. (2003).

PHYLOGENETIC ANALYSIS
Taxon sampling and phylogenetic analyses

A total of 83 Formicidae species were used in the
phylogenetic analysis, including one taxon from
Amblyoponinae, eight taxa from Dolichoderinae,
two from Dorylinae, four from Ectatomminae, eight
from Formicinae, 45 from Myrmicinae, ten from
Ponerinae and four from Pseudomyrmecinae. Three
species were included as outgroups: Apis mellifera
(Apidae), Chalybion californicum (Sphecidae) and
Mischocyttarus flavitarsis (Saussure, 1854) (Vespidae).
All molecular operational taxonomic units were
obtained from GenBank (Supporting Information,
Table S2) and, owing to the best coverage of species
with GS estimation, the genes long-wavelength
rhodopsin (LW-Rh) and wingless (wg) were chosen for
the analysis. Subfamilies and species that did not have
estimates of GS were not included in the phylogenetic
analysis.

The LW-Rh and wg nuclear genes were aligned
separately using the Muscle algorithm (Edgar, 2004)
provided in MEGA v.7.0 (Kumar et al., 2016). The
intron of the LW-Rh gene was excluded from the
alignment, and the aligned sequences of both genes
were concatenated manually for further analyses. To
select the substitution model of DNA evolution that
best fitted each potential partition under Akaike’s
information criterion (AIC) and the Bayesian
information criterion (BIC), we used the software
PARTITIONFINDER 2 (Lanfear et al., 2014, 2017). The
models of evolution estimated for each gene codon
position are presented in the Supporting Information
(Table S3). Considering the estimated parameters,
Bayesian analysis was conducted for phylogenetic
inference using MRBAYES v.3.2.6 (Ronquist et al., 2012).
Trees were searched with two independent runs, with
four Markov chains each (one cold and three heated).
Each chain was run for 50 million generations and
sampled every 5000 generations. Convergence of the
cold chains was analysed using the program TRACER
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v.1.6 (Drummond & Rambaut, 2007), and a traditional
burn-in on the first 25% of the trees was performed
before using the remaining topologies to build a
final majority rule consensus tree with its respective
branch lengths, which was viewed using FIGTREE v.1.3
(Rambaut, 2008).

Reconstruction of ancestral genome size

All 1C-values estimated in this study and the 1C-values
extracted from the Animal Genome Size Database
(Gregory, 2020) were plotted on the phylogenetic
tree. To estimate the ancestral GS throughout the
phylogeny, three different reconstruction methods
were used: maximum parsimony (MP) analysis in
MESQUITE v.3.04 (Maddison & Maddison, 2011);
the maximum likelihood (ML) reconstruction method
implemented in STABLETRAITS (Elliot, 2014); and a
Bayesian inference (BI) via Markov chain Monte Carlo
(MCMC) in BAYESTRAITS v.3.0 (Pagel et al., 2017)
with the ‘continuous random walk’ model. Initially, we
also verified whether the GS evolved according to a
Brownian motion model of evolution throughout the
phylogeny in BAYESTRAITS; the ancestral genome was
calculated assuming a Brownian motion model along
the phylogeny and using a model with correction of the
parameters 6, ¥ and A in the phylogeny, as described by
Pagel et al. (1997, 2004).

STATISTICAL ANALYSES

To analyse the GS variation in Formicidae subfamilies,
the mean GS per subfamily was calculated and plotted
in the phylogenetic tree generated in this study, with
collapsed branches. General linear models (GLMs)
were built to test for differences between the average
GSs of the sampled subfamilies. Differences in GS
averages for each subfamily were assessed by variance
analysis of the GLM. When the P-value of the ANOVA
was significant (P < 0.05), a contrast analysis at the
5% level was performed to determine the average
difference between groups. The statistical analysis
was performed in R v.2.15.1 software (R Core Team,
2013), and the GLM was submitted to residual analysis
to evaluate the adequacy of the error distribution
(Crawley, 2013).

RESULTS
GENOME SIZE ESTIMATIONS

In this study, we present new GS estimates for 99
ant species (Table 1), including new genome size
estimates for 91 species of ants. To calculate the means
and percentages, 79 estimates from the literature,
corresponding to 67 species, were also included. The

number of estimates was thus increased by > 100%
and now represents almost 1% out of a total of 13 750
valid species (AntWeb, 2020). Of the 337 accepted
genera (AntWeb, 2020) there are now 56 estimates for
GS, with Acromyrmex Mayr, 1865 being the genus with
the largest number of species estimated (13 in total).
From 17 existing Formicidae subfamilies, there are
nine estimates, with Myrmicinae having the largest
number of measurements (100) and species (90),
followed by Formicinae, with a total of 22 estimates
corresponding to 20 species, and Dolichoderinae, with
18 estimates corresponding to 16 species.

The mean GS of the family Formicidae is 0.38 pg. The
lowest 1C-values are found in Dolichoderus mariae
Forel, 1885, Dorymyrmex bureni (Trager, 1988) and
Paratrechina longicornis (Latreille, 1802), with 0.18 pg,
and the highest value was found in Apterostigma sp. 3,
with 0.81 pg. Overall, the estimated 1C-values varied
between subfamilies, ranging from 0.18 to 0.61 pg in
Dolichoderinae (average 0.29 pg), from 0.22 to 0.37 pg
in Dorylinae (average 0.30 pg), from 0.32 to 0.71 pg
in Ectatomminae (average 0.45 pg), from 0.18 to
0.39 pg in Formicinae (average 0.31 pg), from 0.21 to
0.81 pg in Myrmicinae (average 0.39 pg), from 0.25 to
0.63 pg in Ponerinae (average 0.47 pg) and from 0.29
to 0.41 pg in Pseudomyrmecinae (average 0.37 pg).
The Amblyoponinae subfamily contained only two
values, with a average GS of 0.36 pg, and Myrmeciinae
only one value, 0.28 pg. From the total of 179 values
estimated, 84% ranged from 0.25 to 0.50 pg (Table 1).

The base composition values in Myrmicinae
oscillated from AT = 59.17% in Pheidole sp. 2 to 64.82%
in Atta sexdens (Linnaeus, 1758), and the mean AT was
62.14%. Similar values were found in Ectatomminae
and Pseudomyrmecinae, with AT of 60.22% and
60.44%, respectively. It was not possible to compare
the AT and GC means of the subfamilies because only
Myrmicinae was represented by more than one species.
The highest AT values, in At¢ta sexdens (Linnaeus,
1758) (64.82%) and Acromyrmex nigrosetosus (Forel,
1908) (63.75%), were not correlated with larger GSs
because the former had a GS of 0.33 pg and the
latter 0.35 pg, and the highest GS value was found in
Apterostigma sp. 3, with 0.81 pg and AT = 62.18%. The
GS values (in picograms) and base composition (AT
and GC percentages) estimated for the species in the
present study are summarized in Table 2.

The simultaneous analyses of target species and
D. melanogaster (internal standard) suspensions of
nuclei provided histograms with fluorescence peaks
corresponding to the mean DNA content of the G/
G, and G, nuclei of both organisms, stained with PI
(Fig. 1A-C) and, for some species, DAPI (Fig. 1D-F).
The G /G, peaks of all specimens included in this study
could be discriminated clearly, and their coefficients
of variation were always < 5%, which is considered
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appropriate for GS determination using FCM (Cardoso
et al., 2012). Six representative histograms, three
for GS and three for base composition, are shown in
Figure 1.

Standard sp.

DM
DM
DM

PHYLOGENETIC ANALYSIS

An alignment length of 871 bp was obtained for the
LW-Rh and wg nuclear regions from 83 sequences
of Formicidae plus three outgroup species, which
includes 500 variable sites (567.4%). The Bayesian
consensus phylogenetic tree based on the LW-
Rh and wg genes is show in Figure 2. Formicidae
is recovered as monophyletic with a high value of
posterior probability (PP) [node 1 (nl), PP = 1],
suggesting that the tree is adequate for further
analysis. Subfamily Amblyoponinae, represented
by only one species, is recovered as a sister group
to all the other ants, as is Ponerinae, with all the
species grouped into one clade [node 2 (n2), PP = 1].
Node 3 (n3), which has a PP = 0.93, comprises the
remaining subfamilies sampled, with Dorylinae
[node 4 (n4), PP = 1] as the sister group to the others.
Node 5 (n5), with a high posterior probability value
(PP =0.95), is divided into two clades: the first clade
[node 6 (n6), PP = 0.69] containing the subfamilies
Formicidae [node 7 (n7), PP = 0.97], Ectatomminae
[node 8 (n8), PP = 1] and Pseudomyrmicinae
[node 9 (n9), PP = 1]; and the second clade
[node 10 (n10), PP = 0.71] containing the other two
subfamilies, Dolichoderinae [node 11 (n11), PP = 1]
and Myrmicinae [node 12 (n12), PP = 1]. Within
Myrmicinae, a last monophyletic clade stands out
[node 13 (n13), PP = 1], which is composed of the
restricted group of fungus-farming ants.

Cell type
BR
BR
BR

Method
FCM
Ardila-Garcia FCM
et al. (2010)

Ardila-Garcia FCM
et al. (2010)

References
This study

1C-value (Mbp)

Mean

371.64
234.72
528.12

SD
0.00

1C-value (pg)

Mean
0.38
0.54

RECONSTRUCTION OF ANCESTRAL GENOME SIZE

In the present study, we verified whether GS evolved
according to a Brownian motion model of evolution
along the phylogeny. The test revealed that it was indeed
the case according to the available data (P > 0.05). This
could be verified by computing the phylogeny correction
parameters, 6, k and A, because the values found were
close to one, which is consistent with the constant-
variance model (sometimes called Brownian motion) and
is a correct representation of the data (Pagel et al., 2017).
However, to confirm this result and leave no possible bias
in the reconstruction analysis of the ancestral genome,
the values found with ML and BI were both calculated
assuming a Brownian motion model in the phylogeny
and with correction of the parameters, which showed no
differences between the results generated.

In addition, the GS values of the ancestor nodes
were calculated using three different methods,
also resulting in no significant differences among

Apidae — outgroup 0.24
outgroup

Subfamily
Myrmicinae
Sphecidae —

FCM: Flow cytometry; FIA: Feulgen image analysis; BCA: biochemical analysis; BR: Brain tissue; HE: Haemocyte; DM: Drosophila melanogaster; CRBC: Chicken red blood cells; SX: Scaptotrigona

xantotricha; TM: Tenebrio molitor; ST: First; NS: Not specified.

Wasmannia sp. Forel, 1893
Apis mellifera (Linnaeus, 1748)
Chalybion californicum (Saussure, 1867)

Table 1. Continued

Species
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Table 2. Percentage of AT and GC bases of the species with genome size estimated in the present study

Species Subfamily Mean 1C-value AT (%) GC (%)
Ectatomma brunneum Ectatomminae 0.38 60.22 39.78
Acromyrmex nigrosetosus Myrmicinae 0.35 63.75 36.25
Acromyrmex rugosus Myrmicinae 0.35 63.23 36.77
Acromyrmex subterraneus brunneus Myrmicinae 0.34 63.38 36.62
Acromyrmex subterraneus subterraneus Myrmicinae 0.35 63.72 36.28
Apterostigma sp. 3 Myrmicinae 0.81 62.18 37.82
Atta sexdens Myrmicinae 0.33 64.82 35.18
Cephalotes pusillus Myrmicinae 0.38 62.59 37.41
Cyphomyrmex transversus Myrmicinae 0.50 62.03 37.97
Megalomyrmex incisus Myrmicinae 0.46 61.27 38.73
Mycetarotes sp. Myrmicinae 0.48 61.54 38.46
Mycetarotes paralellus Myrmicinae 0.38 61.80 38.20
Myrmicocrypta sp. 1 Myrmicinae 0.48 61.45 38.55
Pheidole sp. 2 Myrmicinae 0.37 59.17 40.83
Mycetomoellerius holmgreni Myrmicinae 0.33 62.58 37.42
Mycetomoellerius ihering Myrmicinae 0.40 62.14 37.86
Pseudomyrmex termitarius Pseudomyrmecinae 0.39 60.44 39.56
Mean 0.42 62.14 37.86
them. The ancestral Formicidae (nl; Fig. 2) GS DISCUSSION

reconstructed was 0.37 pg using MP, 0.37 pg using
ML (0.20-0.55, 95% highest posterior density) and
0.38 + 0.05 pg using BI. The values obtained with
the three methods showed only marginal variation
among them, as observed, for example, for node 5
(MP = 0.37, ML = 0.36 and MCMC = 0.35 + 0.04),
node 8 (MP = 0.45, ML = 0.45 and MCMC = 0.44 =
0.05) and node 9 (MP = 0.37, ML = 0.37 and
MCMC = 0.37 = 0.05). The only node that presented
a marginally higher variation was node 13, showing
a lower value with ML (ML = 0.34 pg; 0.24-0.43, 95%
highest posterior density) than with MP (0.40 pg)
and BI (0.40 + 0.05 pg), but the value found with
the other two methods was within the confidence
interval of the first.

STATISTICAL ANALYSES

Significant differences in GS were observed between
the subfamilies sampled (ANOVA, P < 0.01). Through
contrast analysis, the subfamilies Dolichoderinae,
Dorylinae, Formicinae, Amblyoponinae and
Pseudomyrmecinae grouped statistically
(group average = 0.31 pg, P > 0.05) as did the
subfamilies Myrmicinae and Ectatomminae (group
average = 0.39 pg, P > 0.05) (Fig. 3). Only the mean
of Ponerinae differed from all others (average = 0.47,
P < 0.01). Myrmeciinae (0.28 pg) was not considered
in the analysis because only one GS value was
available.

Ants were confirmed to have tiny genomes even after
adding approximately 100 new estimates. The mean
GS values for the subfamilies of Formicidae were
similar to those reported by Tsutsui et al. (2008), but
the amplitude of variation was higher in the present
study, which covered a larger number of species. In
general, all subfamilies sampled with a larger number
of species (normally more than five) presented a
greater range of GS variation, with Myrmicinae being
the most prominent (0.21-0.81 pg).

The GS values reported here for some species that
have previously been estimated with flow cytometry
were found to be close. For example, the published
value of Eciton burchellii (Westwood, 1842) was 0.27 pg
by Tsutsui et al. (2008) and 0.29 pg in the present
study, for Camponotus renggeri Emery, 1894 it was
0.29 pg reported by Aguiar et al. (2016) and 0.32 pg in
the present study, and for Camponotus crassus Mayr,
1862 the value found by Aguiar et al. (2016) and in the
present study was 0.29 pg.

This amplitude of variation within a subfamily
mainly reflected the large variation in GS found
between genera and, in a few cases, between species
of the same genus. This is the opposite of what was
found in the order Lepidoptera (Gregory & Hebert,
2003), where more variation was observed between
subfamilies than within a subfamily. It is also the
opposite of what was suggested by Tsutsui et al. (2008)
for ants, probably owing to the number of species
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Figure 1. Fluorescence intensity histograms obtained from three different species, with Drosophila melanogaster as internal
standard, stained with propidium iodide (PI; A-C) or 4,6-diamidino-2-phenylindole (DAPI; D-F). The x-axis corresponds to
the scale of fluorescence intensity, and the y-axis represents the number of nuclei with that fluorescence intensity.

sampled, and might account for the difference in the and 0.45 pg in the present study. The explanation

mean GS value found for the Ectatomminae subfamily, might be that the only species addressed by Tsutsui
which was 0.71 pg according to Tsutsui et al. (2008) et al. (2008) showed a putative whole nuclear genome
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Figure 2. Bayesian consensus tree resulting from the LW-Rh and Wg gene alignments (871 bp). Coloured dots on the
branches indicate the values of posterior probability (PP): green dots represent values between 1.00 and 0.95, yellow dots
between 0.94 and 0.90, and red dots < 0.89. The nodes are indicated with numbers. Values above and below the branches
represent the ancestral genome size (GS; 1C-values, in picograms) at particular nodes: in blue is the value generated by
the maximum likelihood (ML) [asterisks are related to confidence interval (CI) values shown in Supporting Information,
Table S4]; orange is the value generated by maximum parsimony (MP); and black, given below the branches, is the value
generated by Bayesian inference (BI). Genome size data (1C-values) were obtained in the present work (pink dots) or taken

from the literature (grey dots).

duplication, and this was not the pattern for the other
species of the genus; this was confirmed by the GS
estimate of two other species in the present study that
exhibited approximately half of the estimated value
found by Tsutsui et al. (2008) (0.38 pg in Ectatomma
brunneum Smith, 1858 and 0.36 pg in Ectatomma
edentatum Roger, 1863; Table 1).

Our results suggest that genomic expansion
through whole genome duplication occurred in
the Apterostigma Mayr, 1865 lineage, as was

also suggested by Tsutsui et al. (2008), based on
Apterostigma dentigerum Wheeler, 1925 (0.65 pg).
Two morphospecies, Apterostigma sp. 2 and sp. 4,
presented GS values similar to the already published
estimates, 0.69 and 0.63 pg, respectively. Nonetheless,
Apterostigma sp. 1 and sp. 3 presented higher values,
0.74 and 0.81 pg, respectively. All these values were
almost double those estimated for other species of the
subfamily Myrmicinae, especially within the group
of fungus-farming ants, such as Mycocepurus goeldii
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Figure 3. Mean genome size (in picograms and megabase pairs) estimated for Formicidae subfamilies. The phylogenetic
tree generated in the present study was redrawn, with collapsed branches corresponding to species of the same subfamily.

(Forel, 1893), which had a GS of 0.42 pg, and the genus
Cyphomyrmex Mayr, 1862, which had an average GS
of 0.37 pg.

Tsutsui et al. (2008) suggested that genome
expansion by whole genome duplication in
Apterostigma and Ectatomma Smith, 1858 would have
occurred in the ancestor of each genus, potentially
80-90 Mya for Ectatomma and more recently for
Apterostigma. However, this might be inconsistent
considering the estimated GS values for the two other
species studied here, indicating that the whole genome
duplication might have occurred at the species level
within Ectatomma. However, this seems likely for
Apterostigma spp., because all five species for which GS
has been estimated presented apparently duplicated
values (~0.70 pg). The results found in the present
study also corroborated those of Cardoso et al. (2012),
who suggested that there was no evidence of whole
genome duplication in the Neoattina genera, such as
Mycetophylax spp. (mean GS = 0.35 pg), Cyphomyrmex
spp. (mean GS = 0.37 pg), Mycetomoellerius spp. (mean
GS = 0.36 pg), Sericomyrmex spp. (mean GS = 0.42 pg),
Acromyrmex spp. (mean GS = 0.34 pg) and Atta spp.
(mean GS = 0.32 pg), suggesting that this phenomenon
was related only to the Paleoattina clade, which
includes Apterostigma spp.

We measured base composition by flow cytometry
for the first time in Formicidae species. The mean
values obtained for both the family (AT = 62.14%
and GC = 37.86%) and the subfamilies of Myrmicinae
(AT = 62.38% and GC = 37.62%), Ectatomminae
(AT =60.22% and GC =39.78%) and Pseudomyrmecinae
(AT = 60.44% and GC = 39.56%) are similar to the
values reported for bees [Scaptotrigona xantotricha
Moure, 1950, AT = 61.32% and GC = 38.68%; Trigona
hyalinata (Lepeletier, 1836), AT = 62.40% and
GC = 37.60%; Partamona rustica Pedro & Camargo,
2003 AT = 62.82% and GC = 37.18%; Soares, 2012].
Lorite & Palomeque (2010) suggested that the large
GS values found in Ectatomma and Apterostigma
were related to the difference in the amount of
heterochromatin, because the number of chromosomes
of Ectatomma tuberculatum (Olivier, 1792) was
n = 18 (Barros et al., 2008) and that of a species of the
genus Apterostigma was n = 10-12 (Murakami et al.,
1998), which is not considered high for a chromosome
complement. However, this theory is not supported
by the analysis of the AT/GC ratio of the species in
Table 2, where no correlation between GS and total
amount of AT or GC was observed.

The Bayesian consensus phylogenetic tree based
on the LW-Rh and wg genes recovered Formicidae
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as a monophyletic family, with a high value of PP
(n1, PP = 1). The relationships between subfamilies
and species were also consistent with those found
in other studies, such as the work by Moreau et al.
(2006, 2013), Ward et al. (2015) and Branstetter
et al. (2017), although they comprised only a subset
of species and subfamilies. Several genera were also
recovered as monophyletic: Aphaenogaster Mayr, 1853,
Apterostigma, Camponotus Mayr, 1861, Atta Fabricius,
1804, Cephalotes Latreille, 1802, Crematogaster
Lund, 1831, Ectatomma, Gnamptogenys Roger, 1863,
Lasius Fabricius, 1804, Linepithema Mayr, 1866,
Mycetophylax Emery, 1913 (sensu Klingenberg &
Brandao, 2009), Odontomachus Latreille, 1804,
Pheidole Westwood, 1839, Pogonomyrmex Mayr, 1868,
Pseudomyrmex Lund, 1831, Solenopsis Westwood,
1840 and Acromyrmex, except for Acromyrmex
striatus (Roger, 1863), which emerged as a sister
group to the other leafcutter ants, as demonstrated by
Cristiano et al. (2013). However, several studies have
already demonstrated paraphyletism in the genera
Aphaenogaster (Brady et al., 2006; Moreau, 2006,
2013), Camponotus (Brady et al., 2000, 2006; Moreau
et al., 2013) and Odontomachus (Moreau et al., 2013),
and the results obtained in this work might be a bias
of the number of species sampled.

The reconstructed ancestral GS for Formicidae
was 0.38 pg according to the BI method and 0.37 pg
according to the ML and parsimony methods. This
value was congruent with the overall mean GS for
the family, also reflecting the distribution of the data
(see Fig. 2). Despite this relatively small ancestral
genome (< 1 pg), smaller genomes than this can be
found along the phylogenetic tree, but the change in
values does not follow the evolution of the subfamilies.
This means that the evolution of the genome was not
linear, being smaller in the more basal branches, such
as Amblyoponinae, and higher in the most derived
ones, such as Dolichoderinae, Ectatomminae and
Myrmicinae. In contrast, genomic expansions and
retractions occur in all subfamilies.

The reconstructed ancestral GSs of all the
subfamilies (n2-n13; Fig. 2) had similar values to
those of Formicidae (0.37/0.38 pg), being higher only
in Ectatomminae (n8: 0.45 pg with ML and MP;
0.44 pg with BI) and the clade of fungus-farming
ants (n13: 0.40 pg with BI and MP; 0.34 pg with ML).
This highlighted an interesting pattern: five of the
nine sampled subfamilies (Dolichoderinae, Dorylinae,
Formicinae, Myrmicinae and Ponerinae) presented
at one extreme of GS variation values that were
exactly half the value of the ancestral genome (i.e.
0.18 pg) and, at the other extreme, values that were
essentially twice the others (> 0.60 pg), indicating
gain or loss of an amount of DNA for genera in the

subfamilies sampled. In contrast, Ectatomminae
presented values close to the ancestral genome
(0.36 pg in Ectatomma edentatum), intermediate
values (0.50 pg in Gnamptogenys striatula Mayr,
1884) and duplicate values (0.71 pg in Ectatomma
tuberculatum), indicating an increase in GS only in
the subfamily. Amblyoponinae and Pseudomyrmicinae
presented values close to the ancestral genome, except
for Pseudomyrmex ejectus (Smith, 1858), which had the
smallest GS (0.29 pg). However, the GS was estimated
with a different methodology, with image cytometry
using a blood smear and Tenebrio molitor Linnaeus,
1758 as an internal standard.

When considering only the species collected and
estimated in the present study, the pattern observed
was even more homogeneous. Of the 99 estimated
values, 91% were between 0.25 and 0.50 pg, with
only one value being lower than the minimum limit
(0.23 pg in Dorymyrmex sp. 1); only three values were
intermediate between 0.50 and 0.60 pg (Pachycondyla
striata Smith, 1858 = 0.51 pg, Cephalotes depressus
(Klug, 1824) = 0.53 pg and Odontomachus meinerti
Forel, 1905 = 0.55 pg); and five values were > 0.60 pg,
for the species of Apterostigma previously mentioned
and Neoponera marginata (Roger, 1861) (0.63 pg).

Increasing and decreasing GSs are usually related
to chromosomal alterations that can be numerical
(e.g. euploidy and/or aneuploidy) or structural (e.g.
deletion and duplication) (Moura et al., 2018). These
changes are considered key factors in the evolution of
genomes in plants (e.g. Campos et al., 2011; Lepers-
Andrzejewski et al., 2011; Szadkowski et al., 2011).
However, these types of modifications, in addition
to changing the GS, are usually associated with
deleterious phenotypic effects (Gregory, 2005) and
are not considered the main mechanism effecting GS
changes in animal species. Instead, for some animal
species it has already been demonstrated that GS is
strongly related to the abundance of transposable
elements (TEs) and, for humans, it has been shown
that nearly 45% of the genome is composed of TEs
and their inactive remnants (International Human
Genome Sequencing Consortium, 2001; Gregory,
2005).

Moura et al. (2020) suggested that the differences in
GS found between populations of the same species of
ants could be related to the stress of colonization of new
environments and that the increase in GS might be
correlated with the accumulation of TEs. Considering
all the values discussed above in relationship to the
ancestral GS of Formicidae and the base composition
rate of the species shown on Table 2, some processes
have a greater effect on the evolution of the genome
for the family, such as the accumulation of non-coding
elements and whole genome duplication events.
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Some authors have suggested that the movement
and accumulation of TEs have exerted a strong
influence on the evolution of their hosts and that
the accumulation of these elements in the genome is
a gradual process (Brookfield, 2005; Feschotte, 2008;
Alfsnes et al., 2017). For instance, the accumulation
of TEs explains the difference in GS of many species
and genera in relationship to the ancestral genome
of Formicidae and of the subfamilies themselves,
especially those having a GS > 0.38 but < 0.60 pg,
where the process of whole genome duplication would
fit better. In addition, it also explains the decrease in
GS in relationship to the ancestral genome, suggesting
that the loss of an amount of DNA occurs in these non-
coding regions, because no function or trait was lost in
species with smaller GS (e.g. < 0.25 pg).

CONCLUSION

The results obtained in this study improve the
knowledge concerning the GS of Formicidae, the
base composition of some species, and patterns of GS
evolution through phylogeny from an ancestral genome.
Flow cytometry procedures have been established for
determination of genomic AT/GC ratios, a tool that has
been little used in insects. The flow cytometry data
reported here also contribute to the understanding
of GS diversity and range of variation in Formicidae,
knowledge hitherto skewed given the number of
species analysed in earlier studies. The results of our
study suggest that the evolution of GS in Formicidae
was attributable to the loss and accumulation of non-
coding regions, mainly TEs, and, in some specific
cases, by whole genome duplication. However, the
processes underlying these genome enlargements and
retractions need further analysis, mainly through
species diversification studies, to verify whether these
changes in DNA content are related to the colonization
process of the species, as suggested at the intraspecific
level (Moura et al., 2020). Furthermore, the genome
base composition needs to be estimated in a greater
number of species to verify the range of variation of
AT/GC ratios in the subfamilies and, importantly, to
understand whether the composition differs in those
species with a smaller GS, especially those with
estimated GS < 0.25 pg. Nevertheless, this work will
serve as a guide for future whole genome sequencing
projects, in which all the limits of variation in the
genome size of species can be covered.
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